数学
-
分析学教程 第2卷 多元函数的微分和积分 向量微积分[英]尼尔斯·雅各布(Niels Jacob)本书的目标是为学生和讲师提供易于理解的资料。本书是为大学二年级以上的学生设计的分析学课程的第二卷,本书包括多元函数的微分、多元函数的积分、矢量微积分三部分,本卷的目的是将一个实变量实值函数的分析扩展到从Rm到Rn的映射。 -
数学物理问题[俄]帕维尔·费多罗夫本书是一部版权引进自俄罗斯的俄文原版技术专业本科生教材,中文书名可译为《数学物理问题》。本书的作者是:帕威尔.费多罗夫,他是俄罗斯人,萨拉托夫国立技术大学应用数学教研室教授,主要研究方向为数学和刚体力学,从事教育行业35年。 -
复盘教练石鑫 陈晓燕 姚志玲 褚冬彪你是盯目标,还是盯问题?你是先找套路再行动,还是先行动再打补丁?你是总结规律,还是经验主义?你是拥有N年经验,还是1年经验重复了N年?你是吃一堑长一智,还是好了伤疤忘了疼?高手和低手只差两个字——复盘!《复盘教练》全书是石鑫等四位作者多年企业经营实战经验以及课程多次迭代内容的总结,完整系统地讲述了复盘的内容,清晰了复盘的价值,明确了复盘中最重要的角色——复盘教练,给出了复盘的操作步骤。无论是个人,还是团队,都可以通过阅读此书,化身复盘教练,应用复盘的方法,为自身赋能,完成个体成长和团队提升。本书与行动学习、教练技术等培训方式结合使用,效果更佳。 -
矩阵理论刘启明 编本书比较全面、系统地介绍了矩阵的理论、方法及其应用。全书分别介绍了线性空间与线性变换、欧氏空间与酉空间理论、向量与矩阵的范数理论及应用、矩阵分析与应用、矩阵的分解与特征值的估计、广义逆矩阵、特殊矩阵等内容。附录部分包括一元多项式理论、多元函数理论、基于MATLAB的矩阵运算。各章配有一定数量的习题。本书可作为工科院校高年级本科生和研究生的教材,也可作为相关专业的教师及工程技术人员的参考书。 -
无穷的玩艺 数学的探索与履行[匈]罗兹?佩特(Rózsa Péter) 著;朱梧槚 袁相碗 郑毓信 译《无穷的玩艺——数学的探索与旅行》是数学家路沙·彼得所写的数学普及读物,是一本引人入胜的名著。不同任何公式,着重讨论数学的思想方法。从原始的计数开始,到达数理逻辑这一现代数学分支为止。 -
钱敏数学文选 数学家钱敏精选文集北京大学数学科学学院钱敏先生1927年3月出生于江苏无锡。1944年至1946年就读于成都金陵大学,1946年至1949年就读于清华大学,1949年毕业后留校担任助教。1950年至1951年到北京大学学习,1951年至1952年任燕京大学助教,1952年入职北京大学,先后担任讲师、副教授、教授、博士生导师,1997年6月退休。2019年逝世。钱敏先生在教书育人方面倾注了大量心血,在科研方面探索不断,与人共同提出马氏过程的环流理论及熵产生的概率定义。2013年荣获中国数学会第十一届华罗庚数学奖。《钱敏数学文选》收录钱敏先生代表性的学术论文若干,选目见附件。 -
代数数论及其通信应用冯克勤,刘凤梅,杨晶随着数字通信技术的发展和普及,组合数字(包括图论)、数论和代数学成为信息领域的重要数学工具。本书在第一部分通俗地介绍经典代数数论基本知识,内容包括代数数域和它的代数整数环、理想的素理想因子分解、理想类群和类数、局部数域理论,以及高斯和与雅可比和的计算。在第二部分讲述代数数论在通信领域的一些应用,内容包括组合设计、纠错码、序列的自相关性能和复杂度,以及布尔函数的密码学性质。 -
游戏和博彩中的数学Edward Packel本书介绍和发展了各种博彩和游戏活动的理性分析中需要的一些重要而美丽的基本数学知识。大多数标准的赌场游戏(轮盘赌、21点、基诺),一些社交游戏(西洋双陆棋、扑克、桥牌)和各种其他活动(国家彩票、赛马等)都是基于呈现它们的数学层面的方式进行处理的。数学的发展范围从可预测的概率概念、期望、二项式系数到一些不太知名的基本博弈论思想。第二版新增材料包括:体育博彩和背后的数学;博弈论在扑克唬人中的应用及其与得州扑克现象的关系;Nash均衡概念及其在大众文化中的出现;互联网连接到游戏和Java小程序,用于实践和课堂使用。读者需要的正规的数学背景是一些高中代数知识。为有兴趣处理和扩展书中讨论的思想的读者准备的游戏相关的习题放在大多数章节末尾。一些习题的答案放在本书的后。 -
齐次马尔科夫过程建模的矩阵方法[俄罗斯] 鲍里斯·泽连措夫 著《齐次马尔科夫过程建模的矩阵方法:此类方法能够用于不同目的的复杂系统研究、设计和完善(俄文)》是一部俄文版的概率论专著,中文书名或可译为《齐次马尔科夫过程建模的矩阵方法:此类方法能够用于不同目的的复杂系统研究、设计和完善》。该书作者为鲍里斯·泽连措夫,俄罗斯人,技术科学博士,西伯利亚国立电信与信息大学(新西伯利亚)高等数学教研室教授,主要研究方向为复杂概率系统的数学模拟。该书提出了离散时间和连续时间的马尔科夫过程模型,在其基础上,计算了瞬态和稳态下的状态子集和状态的概率、时间和频率特征,并提出了两种扩大状态的途径:利用子集的边界状态和基于子集之间的转移频率,该书可供解决复杂系统建模问题的工程师和设计师,以及相关专业的学生和科研人员使用。 -
威廉·洛厄尔·普特南数学竞赛 1985—2000Kiran S. Kedlaya, Bj本书是威廉·洛厄尔·普特南数学竞赛的重要参考资料,其特色是将问题置于重要的数学主题的背景下。作者强调了竞赛中的问题与其他问题、课程和更高级主题的联系。最好的问题包含与当前重要研究相关的复杂思想的核心,但这些问题对本科生来说是可以理解的。问题的解答是根据美国数学月刊、数学杂志和参赛者的答案汇编而成的。多种解法可以增强读者的理解,拓展更多与手头问题相关的技术。此外,本书还包含延伸阅读的建议、每个问题的提示、完整的解答以及有关竞赛的背景信息。本书作为深入理解数学的途径,适合学生、教师以及任何对解题感兴趣的人阅读。每一章都解决了几个现实问题,同时介绍了所需的建模优化技术和仿真。这使读者可以了解这些方法是如何使用的,从而更容易掌握基础知识。—CERN Courier本书对于任何对数学竞赛感兴趣或只是尝试挑战大学水平数学的人来说都是无价的。所有的理论都是从简单、易于陈述和美丽的问题开始的,而本书提供了丰富的内容。—The London Mathematical Society
