数学
-
随机平均法及其应用朱位秋,邓茂林,蔡国强随机平均法是研究非线性随机动力学*有效且应用*广泛的近似 解析方法之一。《Stochastic Averaging Methods and Applications,Volume 1(随机平均法及其应用 上册)》是专门论述随机平均法的著作,介绍了随机平均 法的基本原理,给出了多种随机激励(高斯白噪声、高斯和泊松白噪 声、分数高斯噪声、色噪声、谐和与宽带噪声等)下多种类型非线性 系统(拟哈密顿系统、拟广义哈密顿系统、含遗传效应力系统等)的 随机平均法以及在自然科学和技术科学中的若干应用,主要是近30 年 来浙江大学朱位秋院士团队与美国佛罗里达大西洋大学Y.K. Lin 院士 和蔡国强教授关于随机平均法的研究成果的系统总结。《Stochastic Averaging Methods and Applications,Volume 1(随机平均法及其应用 上册)》论述深入 浅出,同时提供了必要的预备知识与众多算例,以利读者理解与掌握 《Stochastic Averaging Methods and Applications,Volume 1(随机平均法及其应用 上册)》内容。 -
无网格微分方程数值解法李小林《无网格微分方程数值解法》是作者在总结课题组十多年来在无网格方法及其理论和应用方面研究工作的基础之上, 经过系统整理而著成的. 《无网格微分方程数值解法》内容丰富, 不仅包括了无网格方法中构造逼近函数的重要方法, 而且包括了求解一些(初)边值问题的 无单元 Galerkin 法、无网格边界积分方程法和无网格配点法. 在系统阐述这 些无网格方法的基本原理之后, 重点讲述它们的性质、稳定性、误差估计和 收敛性等数学理论及分析过程. -
数学建模与数学实验汪天飞等《数学建模与数学实验(第二版)》是一本系统介绍数学建模方法与数学实验技术的教材. 《数学建模与数学实验(第二版)》分为10个章节, 涵盖数学建模的基本理论、常用的数学软件(如MATLAB和Python等), 以及多种实际应用模型. 内容包括初等数学模型、优化模型、数学规划模型、微分方程建模、层次分析法、图论模型、数据处理及应用等, 通过案例分析与实验, 培养读者运用数学方法解决实际问题的能力. 每章配有丰富的习题与实战案例, 帮助学生深入理解建模方法的应用及技巧. -
流形与几何初步梅加强《流形与几何初步(第二版)》是一本微分流形和现代几何的入门教材。它从微分流形的定义出发,介绍了现代几何学研究中的各种基本概念和技巧。《流形与几何初步(第二版)》前两章为基础内容,主要介绍流形上的微积分并证明Stokes积分公式;后三章为进阶内容,分别从几何、拓扑和整体分析三个方面阐述现代几何中的一些重要成果,如Gauss-Bonnet-Chern公式、Hodge定理以及Atiyah-Singer指标公式等。《流形与几何初步(第二版)》内容丰富、语言简洁,《流形与几何初步(第二版)》含有详细的例子和习题。凡具有微积分、线性代数、点集拓扑以及泛函分析基础的读者均可阅读《流形与几何初步(第二版)》。 -
麦克斯韦方程新拓展和应用李尔平等《麦克斯韦方程新拓展和应用》从电磁物理理论出发,重点阐述了在量子效应、尺寸效应和介质运动效应作用下的麦克斯韦方程*新拓展与应用,以及这些效应在纳米尺度电子和光学器件中的影响。这是迄今为止系统地介绍在此环境下麦克斯韦方程理论、实验和应用研究的*新拓展的*部专著。*先,讨论了麦克斯韦方程组与量子场论结合及其量子化,为量子电磁场技术前沿应用奠定了理论基础,进而阐述了麦克斯韦方程组与薛定谔方程的耦合以及极小尺度下的量子隧穿效应,为极小特征尺寸的电子光子器件及系统工程提供非**的微观电磁场理论设计实用性框架。其次,介绍了在低速近似条件(远小于光速)下,从机械激励介质系统出发推导出动生麦克斯韦方程组,实现了在电-磁-力三场耦合情况下电磁理论的系统描述。*后,对于固定局域运动的介质,通过定义等效的电场和磁场,讨论了简化的动生麦克斯韦方程组解析解及其实际工程应用。 -
几何测度论〔美〕弗兰克·摩根(Frank Morgan)《几何测度论:初学者指南(第5版)》是美国数学家弗兰克·摩根的匠心之作,专为初学者量身打造。本书从基础理论出发,逐步引导读者深入理解几何测度论的核心概念与应用。作者通过丰富的插图和生动的语言,将复杂的几何测度论知识变得直观易懂。书中不仅涵盖了测度论的基本定义和性质,还深入探讨了其在高维空间、曲线曲面几何以及微分几何变分问题中的应用。此外,本书特别新增了对数凸密度猜想这一重要新定理的专题覆盖,以及关于流形的近期研究进展,使读者能够紧跟该领域的学术前沿。无论是学习几何测度论的初学者,还是该领域的研究人员和数学家,都能从本书中获益匪浅。 -
索伯列夫空间〔加〕罗伯特·亚当斯(Robert A. Adams),〔加〕约翰·福尼尔(John J. F. Fournier)《索伯列夫空间(第2版)》是一部深入解析索伯列夫空间理论的匠心之作,由加拿大不列颠哥伦比亚大学的两位数学教授罗伯特·亚当斯与约翰·福尼尔合力打造。本书整体更新了第一版的内容,系统地介绍了索伯列夫空间的基本概念、主要性质及其嵌入特征,为读者提供了坚实的理论基础。书中详细阐述了索伯列夫空间在偏微分方程弱解存在性方面的关键作用,并深入探讨了这些理论在纯数学、应用数学及物理科学中的广泛应用。此外,作者还巧妙地融入了近期的研究成果,使得本书在保持学术严谨性的同时,也具备了前沿性和实用性。无论是数学专业的学生和研究者,还是物理学、工程学等相关领域的研究人员,都能从本书中获益匪浅,获得深入理解和应用索伯列夫空间的理论与方法。 -
微分方程基础与边值问题影印版R. Kent Nagle、Edward B. Saff、Arthur Davi本书介绍了微分方程的基本理论,及其在科学和工程中的应用。书中还介绍了微分方程的数值解法和应用数学计算软件求解微分方程。本书的特色有1. 各节内容模块化,便于教师根据授课需求组织教学内容。2. 使用数学计算软件辅助教学,降低学生的学习难度。3. 附录包含简要的微积分基础,供学生查阅。4. 各章末含研究课题,使学生体会数学研究的过程。5. 大部分章开篇展示本章知识的发展背景,章末含小结。6. 略去部分较难的证明过程,并给出对应的参考文献。 -
Cn中双全纯映照与多全纯函数的研究与应用崔艳艳本专著第1章主要介绍了多复变空间中的双全纯映照及多全纯函数的研究背景和研究现状,并简要介绍了主要结论;第2章介绍了双全纯映照的两类新子族,并对其系数估计和增长、掩盖、偏差定理进行了详细探讨;第3章讨论了Roper-Suffridge算子在Hartogs域上的推广,并详细研究了几类Roper-Suffridge延拓算子保持双全纯映照子族的几何不变性;第4章引入了高维复空间上的k全纯函数,并对其性质进行了讨论,得到了一些与全纯函数相平行的结论;第5章研究了多复变空间中的柯西型奇异积分算子及其在边值问题中的应用,对k全纯函数的Riemann边值问题和非线性边值问题以及双-多全纯函数的非齐次复偏微分方程问题进行了详细探讨;最后一章总结了本书的主要观点。这本专著是笔者经过长时间的研究、探索和实践的成果,其涵盖的主题对于推动多复变函数论领域的发展具有重要意义。笔者希望通过这本专著,将自己在相关领域内的研究成果与读者分享。在撰写这本专著的过程中,笔者尽可能地收集了最新的研究成果和数据,并进行了深入的分析和探讨,目的是通过这本专著为读者提供更全面更深入的理解和认识。 -
希尔伯特空间及应用导论〔美〕洛肯纳斯·德布纳斯(Lokenath Debnath) ,〔波〕皮奥特·米库辛斯基(Piotr Mikusiński)《希尔伯特空间及应用导论(第3版)》是一部深入介绍希尔伯特空间理论及其广泛应用的教材。书中内容从内积空间和希尔伯特空间的基本概念出发,详细阐述了这些空间的几何性质和重要定理。同时,本书还通过丰富的实例和详尽的解释,展示了希尔伯特空间在傅里叶分析、积分方程、微分方程和量子力学等多个领域的实际应用。内容组织严谨,语言简洁明了,适合数学、物理和工程领域的研究生和研究人员阅读。通过阅读本书,读者不仅能够系统地掌握希尔伯特空间的理论知识,还能将其灵活应用于实际问题的解决中。
