数学
-
四面体几何学引论曾建国著本书主要收集了四面体几何元素的位置关系研究的新成果,全书分为两篇,共十章。本书应用类比的方法,将三角形中共点、共线、共圆等性质引申推广至四面体中,并得到一系列四面体中的共点、共面、共球等性质。希望本书的出版能为读者进一步开展四面体几何学研究提供参考。本书可供中学数学教师及高中生、大学生在内的广大几何爱好者阅读,也可用作几何学及数学教育相关方向硕士研究生的教学参考书。
-
数学问题(德)D.希尔伯特 著;李文林 袁向东 编译本书选编了希尔伯特在1900年巴黎国际数学家代表大会上的著名讲演《数学问题》。希尔伯特在该讲演中阐述了他对数学的本质、数学知识的来源、数学问题的重要性及研究方法的精辟见解。他在讲演中提出的23个数学问题,激发了整个数学界的想象力,推动了20世纪数学的发展。
-
高等数学铁军.
-
解析几何理论与应用研究董志华,晋珺作为变量数学发展的第一个决定性步骤,解析几何的建立对于微积分的诞生有着不可估星的作用。解析几何是数学中一个很重要的知识,它的优点在于使数形结合,把几何问题化作数、式的演算(当然反过来,数、式也可以用几何方法去处理),因而有一定的章程可以遵循,不需要挖空心思去寻找解法。本书主要运用向量代数来研究曲线及曲面等几何问题,并且对其应用进行介绍。本书内容精炼、重点突出,可作为理工科和其他非数学类专业高等院校的教学用书,也可供考研生、自学者和广大科技工作者参考。
-
数学建模理论与应用研究赵春燕,李焱,于存光本书系统介绍了数学建模的理论知识和求解方法,结合典型实例全面阐述了数学建模解决实际问题的基本过程。内容涵盖了数学建模课程中的一些基本方法和基本模型,包括插值与拟合、线性规划、整数规划与非线性规划、常微分方程与差分方程模型、概率统计模型、图论与网络优化、综合评价与决策模型等。本书按照模型建立、模型求解、模型应用的框架结构进行编写,体现了理论知识、实际问题与数学软件及算法的有机融合,使方法好用且易实现,深入浅出,通俗易懂。
-
离散数学蔡之华,薛思清,吴亦奇,徐凯本教材主要介绍计算机理论与应用所需要的数理逻辑、集合论、群论以及图论等主要内容,重点介绍离散结构的构造、性质及其相关推理证明方法,面向计算机的现代数学观点与方法,注重培养学生的抽象思维能力、逻辑推理能力,以及应用离散数学于计算机理论与工程问题的分析、建模、推理和论证的能力。教材采用问题驱动模式,从表达、理论、工程应用几个层面设计主要内容,注重将数理逻辑、集合论、群论以及图论的发展历程中的相关思想、方法融入有关问题的探讨过程中,引导学生应用有关离散结构表达计算机科学相关理论与工程应用问题,结合计算机科学理论与工程应用,理解抽象、理论与设计等三个计算机科学的三个学科形态,并自然有效地融入思政元素。
-
工时可变的排序模型与算法张新功在排序问题的研究中, 一方面问题模型求解方法的多样性, 另一方面实际的生产和服务需求使得问题新模型不断涌现, 使得经典排序的基本假设被不断突破. 工时可变的排序问题, 是一类非常重要的非经典排序问题.本书介绍了工时可变排序问题的重要性和现实意义, 介绍了三类工时可变的排序问题, 以及在重新排序中的应用. 本书介绍了基本方法、理论和基础知识, 阐述了时间相关的排序问题、工期相关的排序问题、工件加工时间之和相关的排序问题, 以及重新排序在学习或者退化效应中的应用. 研究技术和内容涉及成组技术、资源约束分配、窗时排序、准时排序以及拒绝费用限制等相关的排序模型、问题特性、复杂性分析和优化算法.
-
代数几何学原理IV[法] Alexander Grothe《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928—2014)在J. Dieudonné的协助下于20世纪50—60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell猜想的解决(Faltings获Fields奖的工作)、motivic上同调理论(Voevodsky获Fields奖的工作)、椭圆曲线Taniyama-Shimura猜想的解决(Wiles据此证明了Fermat大定理)、函数域上的Langlands对应的证明(Lafforgue获Fields奖的工作),等等。此外,EGA的出现还促进了交换代数、同调代数、解析空间理论、代数K理论等多个数学分支的发展。 时至今日,EGA仍然是所有介绍概形理论的书籍之中最全面和最有系统的著作,是数论和算术代数几何等方向的学生和研究人员的重要参考书。
-
剪切波[德]基塔·库提尼奥克,[美]迪梅特里奥·拉贝特异向多尺度系统及剪切波自推出以来,其理论得到迅速发展,并获得了广泛认可。它提供了一种实现连续和数字化条件下真正的统一处理方法,并在多个工程领域得到应用。本书由该领域的两位先驱者撰写,是世界上第一部关于剪切波和几何多尺度分析的著作。全书深入阐述了剪切波的理论和应用,可供应用数学、计算机科学、电子信息科学、电气及自动化、通信、雷达、声呐、遥感、图像和生物医学等工程技术专业的高年级本科生、研究生和相关领域的科学技术人员学习参考。
-
用数学的语言看世界[日] 大栗博司本书为著名理论物理学家大栗博司先生写给女儿的数学启蒙书,书中以用“数学语言”解读自然为线索,突破传统数学教育的顺序和教学方式,用历史事件、生动故事以及比喻直接讲解数学核心概念的原理与相关体系,并且讲解了把数学作为一门“语言”、用数学探索自然不可见结构的思维方式,是重新认识和理解数学的科普佳作。增订版对各章内容进行了补充与扩展,使本书内容更为翔实。