数学
-
近代应用数学基础苏维宜本书系统地介绍集合论、近世代数、点集拓扑、泛函分析、Fourier分析、分布理论、微分几何等近代应用数学的基本内容,及其在自然科学领域中的应用。书中强调对近代数学基本概念的理解、对重要论证方法的思路分析,以培养读者掌握并应用近代应用数学工具解决本专业的实际问题。20世纪初期至今的百余年中,数学科学与自然科学诸领域相辅相成,互相促进,彼此渗透,共同发展,使得数学科学成为当今各个科学领域中不可或缺的重要工具。因此介绍近代应用数学基本内容的教材已成当务之急,本书就起了这样的重要作用。 -
数学思维2[美]罗伯特·布利策本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统 -
数学思维3[美]罗伯特·布利策本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统 -
微分方程和代数黎景辉本书作者是世界著名数学家R. Langlands (朗兰兹) 的弟子。在数学领域中,著名的朗兰兹纲领是一系列影响深远的构想,联系数论、代数几何与约化群表示理论。本书则从数学底层讲述微分方程和代数这两个数学重要分支的内在联系,通过讲述非交换环、单径表示等内容,向读者介绍在一般微分方程和代数的数学书中不常见的内容,展示微分方程和代数的发展史中的光辉一页,立意颇高。 本书是《现代数学基础》系列中的一本,具体内容包括:微分方程与代数、复微分方程、p进微分方程、形式偏微分方程、联络的同调代数、G丛、Simpson对应和微分算子层等,可供数学及相关专业的师生及科研人员使用参考。 -
微分方程定性理论[苏]В.В.涅梅茨基,В.В.斯捷潘诺夫 著; 微分方程定性理论翻译组 译本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述”维微分方程组的解的渐近性状和李雅普诺夫(A.M.Lyapunov)式稳定性的解析判定方法。第四章讲述n维微分方程组的研究。第五章讲述由苏联学者马尔科夫(A.A.Markov)引入作为度量空间自身变换的单参数群的一般动力体系的理论。第六章讲述具有不变测度的一般动力体系的度量理论。本书适合高等院校师生及数学爱好者研读。 -
边界积分韩厚德、殷东生《边界积分-微分方程方法的数学基础(英文版)》主要讨论边界积分-微分方程的数学基础理论,主要聚焦于把传统的边界积分方程中的超奇异积分转化为带弱奇性的边界积分-微分方程。《边界积分-微分方程方法的数学基础(英文版)》简要介绍了分布理论,而边界积分方程方法基于线性偏微分方程的基本解,所以对微分方程的基本解做了较为详细的介绍。在余下的章节里,依次讨论了拉普拉斯(Laplace)方程、亥姆霍兹(Helmholtz)方程、纳维(Navier)方程组、斯托克斯(Stokes)方程等的边界积分-微分方程方法和理论;还讨论了某系非线性方程,如:热辐射、变分不等式和斯捷克洛夫(Steklov)特征值问题的边界积分-微分方程理论。最后,讨论了有限元和边界元的对称耦合问题。 -
从分析解题过程学解题王扬本书是笔者的第三本新书《从分析解题过程学解题:高考压轴题与竞赛题之关系探究》的延续,也即笔者继续进行高考难题与一些竞赛题之关系的探究.本书重点探究如何从一道已有题目挖掘出若干新题,并阐述问题解法来历的形成过程.本书与前一本书略有不同,最大的不同就是习题增加到5个方面的内容,共300多道.其中有高考较难问题(比率较大),也有竞赛方面的问题.本书内容不是习题与解答的简单堆砌,而是尽力给出大部分习题的来历和解法的思考过程及其演绎结论,它们都是笔者近40年对数学教学的长期追求和探索的结果.本书适合高中生、中学数学教师、大学师范生以及数学爱好者参考阅读. -
丘成桐数学论文选集曹怀东,李骏,[美]孙理察丘成桐是当代最杰出的数学家之一,因其在微分几何领域的工作而获得了许多荣誉,其中包括数学界最高荣誉——菲尔兹奖。丘成桐也因其在代数和凯勒几何、广义相对论及弦理论等方面的工作而闻名,他在这些研究领域的建立和发展过程中产生了巨大的影响。本书收录了丘成桐自1971年至1991年已发表的部分数学论文——这一时期他在包括几何分析、凯勒几何和广义相对论在内的众多学科中取得了突破性的成就。本书按照主题领域组织内容,包括度量几何与极小子流形、度量几何与调和函数、本征值与广义相对论,以及凯勒几何。书中还收录了相关领域专家的评论和反映书中所讨论的思想发展过程的回顾。 -
实分析中的问题与解答(日)畑政义 著 陈青宏 译本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义. -
趣味魔术与数学故事〔俄〕雅科夫·伊西达洛维奇·别莱利曼著 李薇薇译魔术表演是很多孩子都喜欢的一个节目,对那些神奇的、犹如魔法一般的表演,总是让很多孩子甚至大人都急于去破解其中的秘密。本书作者运用自己独特的写作手法,将许多令人惊讶的魔术及奇特又经典的数学故事,如神奇的“腹语”“心灵感应术”“猜数字”等,用详尽的科学解释一层层地剥去其中秘密,让孩子们不仅可以破解魔术,甚至自己也可以化身为魔术师。
