数学
-
有限域上的代数曲线冯克勤 刘凤梅 廖群英本书在理论方面以韦伊定理为目标,介绍有限域上平面代数曲线的几何、数论与代数性质和概念。韦伊定理是几何、数论和代数的结合,这种结合发展出纯粹数学的一个新的交叉分支:算术代数几何。本书意图帮助莘莘学子了解和掌握有限域上的代数曲线理论,使代数曲线理论成为研究通信中各种问题的有力的数学工具。 本书分为预备知识、代数曲线的理论、代数曲线的应用三部分。预备知识部分介绍抽象代数知识;理论部分包括射影直线理论、一般代数曲线理论、函数域算术及zeta函数理论;应用部分主要涵盖编码、密码的几个主要应用。 本书既可作为数学、信息科学或其他相关专业的研究生教材,也可作为相关领域中的教学、科研人员以及工程技术人员的参考书。
-
邦费罗尼不等式及概率应用石焕南本书分为6章,从一道可用邦费罗尼不等式解答的IMO试题谈起,详细阐述了概率与不等式、概率与组合问题、概率与求和、概率与积分等内容,论述了邦费罗尼不等式及其在概率论中的应用,充分体现出用概率论知识来解答其他数学问题的优越性.本书适合大学数学系的学生、中学数学教师、参加数学竞赛的教练员和参赛选手以及数学爱好者参考使用.
-
学数学会上瘾李有华
????为什么学数学总是学不进去,或是总也学不好?其实是你一直还没踏入数学学习的门槛。数学不是一个单独的学科,众多学科都与其相关联。在生活中,数学也无处不在。当你真正了解了数学的本质,学会用数学思维去思考一切后,你就会发现,原来数学就这么简单,而且,学数学真的会上瘾。请跟随本书,开启一段从史前时期到人工智能时代的跨越千年的数学之旅。 -
逻辑人生约翰·L. 卡斯蒂,维尔纳·德波利库尔特·哥德尔是一个智慧巨人。他的不完全性定理不仅改变了数学,而且改变了整个科学世界和建筑于此定理之上的哲学。哥德尔定理粉碎了逻辑最终将使我们理解整个世界的梦想,同时也引发了许多富有挑战性的问题:什么是理性思维的界限?我们能够完全理解我们自己造的机器吗?我们能够搞清楚我们心智的内在工作过程吗?当研究结果缺乏逻辑的确定性时,数学家还怎么继续工作?在这本书里,我们最终遇到了置身于这些深邃思想背后的那个人。约翰·L.卡斯蒂和维尔纳·德波利为我们描述了一个复杂的人物:既入世又遁世,既雄心勃勃又固执己见。正像卡斯蒂和德波利所明断的那样,哥德尔的影响是持久不衰的。他的工作不仅使数学发生革命性的变化,而且波及哲学、语言学和计算机科学,甚至还包括宇宙学。
-
一个应用数学家的辩白[美]劳埃德·尼克·特雷费森(Lloyd Nick Trefethen)本书是数值分析家劳埃德·尼克·特雷费森教授的心得之作。除了回顾早期学习数学的成长过程,以及深耕数值分析领域的心路历程,本书还体现了特雷费森教授对数学本身的深刻思考、对纯数学和应用数学的真切感悟,以及对数学所面临的挑战的反思。 本书适合对数学史、数学思想和数学教育,以及纯数学和应用数学感兴趣的所有读者。
-
代数几何学原理IV[法] Alexander Grothe《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928—2014)在J. Dieudonné的协助下于20世纪50—60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell猜想的解决(Faltings获Fields奖的工作)、motivic上同调理论(Voevodsky获Fields奖的工作)、椭圆曲线Taniyama-Shimura猜想的解决(Wiles据此证明了Fermat大定理)、函数域上的Langlands对应的证明(Lafforgue获Fields奖的工作),等等。此外,EGA的出现还促进了交换代数、同调代数、解析空间理论、代数K理论等多个数学分支的发展。 时至今日,EGA仍然是所有介绍概形理论的书籍之中最全面和最有系统的著作,是数论和算术代数几何等方向的学生和研究人员的重要参考书。
-
数字经济杨虎涛数据作为一种新的生产要素,正与资本、劳动等要素相结合,以前所未有的广度和深度重构生产和生活方式。然而,数字经济在生活性服务业中的过度倾斜,虽然使智能化生产和智能化流通发生了根本性变化,但仅仅缩短了生产到消费的距离,尚未给生产带来颠覆性革新。因此,必须以制造业为底座,推动数字经济与实体经济深度融合,将数据规模优势转化为数据胜势,巩固壮大实体经济根基。这既是历次技术革命浪潮带给我们的启示,也是新发展格局下实现经济高质量发展的要求。
-
计量经济学导论杰弗里·M.伍德里奇本书是一本经典的初级计量经济学教材,语言通俗易懂,且辅以恰到好处的案例指导学生学习和运用计量方法。与大多数其他同类教材最显著的区别是,它的篇章结构是根据分析数据的类型进行划分的:第一篇是横截面数据的回归分析;第二篇是时间序列数据的回归分析;第三篇则介绍了一些更深入的专题。本书的主要特点是:(1)不需要具备高深的数学知识,读者只要掌握大学所学的线性代数和概率统计基础知识即可。(2)强调计量经济学在实际问题中的应用。(3)含有大量例题和练习题。章末习题和计算机习题多着重于经验研究而非复杂的推导。(4)课程安排比较灵活。教师可以根据教学需要合理挑选章节进行讲授,而不会影响教学的连续性。本书适合各高等院校经济管理类专业本科生作为计量经济学教材,还可供经济管理类教师及科研人员作为参考书使用。
-
信用货币理论原理阿铭本书是信用货币理论在国际范畴的应用。本书从当前以美元为核心的国际货币制度造成的问题开始,在第一章分析为什么现有的国际货币制度必须改变,在随后的几章中从货币区、国际货币制度、汇率、国际收支等几个方面分析应如何看待和改革国际货币制度,并在最后一章提出三种国际货币制度改革的路径,最后一节对未来的国际货币制度做了展望。
-
数学漫谈许莼舫《数学漫谈》是著名数学教育家许莼舫巨著,是一部数学思维训练的体操。本书以生动的语言提出一个概念,先举出生活实例引人入胜,引发思考,然后提出分析方法,如:找规律、换思路、认清对象、分析问题等,近20种分析方法。再运用不同类型的题目对这些方法进行拆解,读者往往能在某一个题目的运算过程中,洞察到这种方法的奥妙,充分认识和了解到这种新型的解题方法的益处。这种拆解的过程就是一个数学思维训练的过程,在不断的引导和启示中一步步加深认知。每个章节的结尾处设置了趣味的益智谜,意在进一步拓展和巩固解题思路,将实用和趣味充分地结合起来。《数学漫谈》的这种提出概念、提供方法、拆解招式、巩固延伸的构架,意在举一反三中夯实数学基础,拓展解题思路,完善解题方法,对数学的学习起到意想不到的效果,实现从学会到会学的跨越。