数学
-
微分方程定性理论[苏]В.В.涅梅茨基,В.В.斯捷潘诺夫 著; 微分方程定性理论翻译组 译本书共六章。第一章讲述实域内常微分方程理论的基本知识,包含:解的存在、唯一和对初值的连续相依性定理;动力体系的概念;积分线在常点附近的局部直性等。第二章讲述庞加莱(J.H.Poincare)和本迪克森(I.O.Bendikson)所创建的积分线在平面和锚圈面上的定性理论及其近代的发展。第三章讲述”维微分方程组的解的渐近性状和李雅普诺夫(A.M.Lyapunov)式稳定性的解析判定方法。第四章讲述n维微分方程组的研究。第五章讲述由苏联学者马尔科夫(A.A.Markov)引入作为度量空间自身变换的单参数群的一般动力体系的理论。第六章讲述具有不变测度的一般动力体系的度量理论。本书适合高等院校师生及数学爱好者研读。 -
写给中学生的数学分析Л.С. 庞特里亚金 著,李植 译苏联著名数学家庞特里亚金院士为中学生专门撰写了一系列数学普及读物,旨在向广大读者介绍高等数学的重要概念和方法。这些书简明扼要, 根据中学生的认知和理解能力用不大的篇幅讲解相应数学领域的基础知识, 注重基本概念的联系和普遍性, 部分书还附有颇具启发性的例题或习题。庞特里亚金在书中展示了他惊人的数学直觉和驾驭公式的技巧, 注重学科发展史,看重理论框架而非繁琐计算。这一系列图书为广大读者提供了探索数学世界并培养数学思维的机会。本书是该系列图书中的一本,涵盖了中学所讲授的微积分初步的全部内容,包括导数的概念,多项式、三角函数、指数函数、对数函数等基本函数的导数,不定积分和定积分的概念,图形的面积及有限和的极限等基础知识。本书通俗易懂,在正文后另有庞特里亚金的短篇自传作为附录,供广大读者参考。 -
分析学Elliott H. Lieb,Mich本书是一本极具特色的实分析优秀教材。内容包括Lp空间、重排不等式、积分不等式、分布理论、Fourier分析、位势论和Sobolev空间等,还有专门的章节介绍变分法及特征值问题,其中涵盖了许多数学物理的例子。阅读本书,读者只需要普通微积分的基础,但通过本书读者可以迅速地从基本的测度论进入广阔的分析世界,领略一些近年来新的研究成果。毫不夸张地说,掌握了本书知识,读者对数学分析的理解将会迈上一个新台阶。本书适合作为高等院校数学专业研究生的教材和教师的参考书,也适合自然科学和工程院系对分析工具感兴趣的学生阅读。 -
代数几何扶磊代数几何是数学中的核心学科,与数学的众多分支相关。本书是代数几何的入门课本,其目标是在假设读者具有最少预备知识的情况下,介绍概形上凝聚层的上同调理论,为读者学习更专业的代数几何做充分准备。书中涵盖了Grothendieck的经典著作《代数几何原理》(EGA)I-III 中的主要内容,并假设读者熟悉Atiyah和Macdonald编写的《交换代数导论》的第1-8章。本书为第二版,除纠正第一版中的错误、改进表述外,作者还新增了练习题。 本书适合高等院校数学及相关专业作为代数几何的教科书使用。 -
圆锥曲线论(古希腊)阿波罗尼奥斯 著;朱恩宽等 译《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。 -
解析数论[美] 亨里克·伊万尼克(Henryk Iwaniec),[瑞士] 伊曼纽尔·科瓦尔斯基(Emmanuel Kowalski) 著,陶利群 译《解析数论》的内容涵盖解析数论的经典与现代方向,全书共有26章,主要介绍了算术函数、素数的初等理论、特征、求和公式、L函数的经典解析理论、初等筛法、双线性型与大筛法、指数和、Dirichlet多项式、零点密度估计、有限域上的和、特征和、关于素数的和、全纯模形式、自守型的谱理论、等差数列中的素数、等差数列中的最小素数等内容,《解析数论》可供高等院校师生参考阅读。 -
数学竞赛中奇妙的多项式[美]蒂图.安德雷斯库 著 罗炜 译本书共包含8章内容,给出了252个不等式的相关示例及其理论,并对105道不等式相关的习题进行了详细解答,同时还给出了77个不等式附加的有趣问题,进一步加强了本书的阐述.本书在前7章中为了帮助读者熟悉和掌握不等式的相关概念,强调了几个策略和重要的引理,本书的内容是代数思想与教学经验相结合的结果.本书适合高等院校师生和对此部分感兴趣的读者阅读收藏. -
从初等数学到高等数学彭翕成本丛书希望在中学数学和高等数学之间搭建一座桥梁,以中学数学为起点,逐步展示高等数学的基本思想和方法,便于大学新生快速适应高度抽象的高等数学。反过来,介绍如何把握高等数学的高观点,更好地服务于中学数学的教与学。本书主要讲述复数在初等数学中的应用,包括解几何题、不等式和三角问题等。本书的最大创新在于不再将复数法视为一种“暴力”计算方法,而是将恒等式思想与复数结合,通过恒等式沟通几何、代数、三角、不等式之间的联系。复数恒等式方法不仅能解题,还能发现新命题,并关联多个看似不相关的命题,为初等数学研究提供新的探索思路。本书案例翔实,思想新颖,方法简明,可启迪读者的思维,开阔读者的视野,提高读者提出问题、分析问题与解决问题的能力,适合学有余力的高中学生和教师、师范生以及数学教育研究者参考。 -
偏微分方程[美] L. C. Evans 著, 刘本书荣获2023年度Steele数学阐述奖,中文版首次出版! 本书是偏微分方程领域权威著作的第二版。它全面概述了现代技术在偏微分方程理论研究中的应用,其中特别强调非线性方程。本书内容广泛、论述清晰,这使其成为研究生偏微分方程课程的优秀教材。作者在第二版中做了许多修改,其中包括: - 新增一个关于非线性波动方程的章节; - 新增80多道习题; - 增加几个新的小节; - 大大扩充了参考文献。 第一版的书评: 我在常规的偏微分方程课程以及专题课程中都用过这本书。它巧妙地整合了深刻的洞察力和丰富的技术细节……Evans的书证明了他对该领域十分精通,并且表述清晰易懂。 — Luis Caffarelli,得克萨斯大学 用Evans的书来教学非常有趣。它解释了许多偏微分方程的基本思想和技巧……每个学习分析的研究生都应该读读它。 — David Jerison,麻省理工学院 我用这本书来为学生准备专题考试,这是开始撰写论文之前的一个必修环节。这本书很好地介绍了偏微分方程……我非常满意用这本书来为我的学生做准备工作。 — Carlos Kenig,芝加哥大学 Evans的书已被誉为经典之作。对于初学者来说,这是一个明智的选择,同时也适用于那些希望拓宽知识广度的专家……它是该领域许多方面的杰出参考书。 — Rafe Mazzeo,斯坦福大学 -
圆锥曲线论(古希腊)阿波罗尼奥斯 著;朱恩宽等 译《圆锥曲线论》共8卷,是一部经典巨著。 前4卷的希腊文本和其次3卷的阿拉伯文本保存了下来,最后一卷遗失。《圆锥曲线论》是由阿波罗尼奥斯所写的一部经典巨著,它可以说是代表了希腊几何的最高水平。本书为第5-7卷中文翻译版本,属于拓广部分。本书提出了很多新的性质,推广了梅内克缪斯的方法,讨论了椭圆上短轴上的点到曲线的最小线和最大线以及最小线与最大线的性质和关系。作为综合几何最高水平的《圆锥曲线轮》是世界数学史的一座丰碑,他的数学内容、数学思想在人类文化史上占有重要地位。
