数学
-
半经典分析Maciej Zworski半经典分析提供了基于经典量子(粒子波)对应关系的偏微分方程技术。这些技术包括几何光学和 Wentzel-Kramers-Brillouin 近似等著名工具。本书研究的问题包括高能特征值渐近性和演化方程解的有效动力学。从数学的角度看,半经典分析是微局部分析的一个分支,广义上讲,是将调和分析和辛几何应用于线性和非线性偏微分方程的研究。本书旨在作为研究生级别的教材,向读者介绍偏微分方程中的半经典和微局部方法。它在后面的章节中增加了许多专门的高级主题,这些主题提供了与当前研究文献的联系。 -
组合博弈论Aaron N. Siegel组合博弈论研究的是没有隐藏信息和随机因素的双人游戏。该理论为这类游戏中的局面分配了代数值,并试图量化它们之间的代数和组合结构。三十年前,随着Berlekamp、Conway和Guy出版了经典著作Winning Ways for Your Mathematical Plays,此理论以现代形式被引入,近年来人们对它的兴趣迅速增加。本书是该领域全面而最新的介绍,从最初的原则和例子延伸到许多最新的进展。大约一半的内容致力于对经典理论的严格处理;其余材料则首次以教材形式深入探讨诸如misère商理论和Berlekamp的广义温度理论。本书包含数百个例子和习题,并经过仔细地交叉引用,适合学生、教师和研究专业人员阅读。文中提到了40多个开放性问题和猜想,突显了这个年轻而激动人心的领域仍存在许多未解之谜。 ::::::::::::::- 对于那些希望深入了解组合博弈的人来说,这是一本值得阅读的书……Aaron Siegel是目前该领域最权威的研究人员,并参与了许多核心发展。在本书中,他把它们结合在一起。此外,本书还包括了丰富的旁白和细节,解释了如何以及为什么采取某些指示;这是一个专家的重要见解……作者保持了轻松的基调,并将历史、轶事和重要观察融入其中,使其成为一本有趣且富有教育意义的读物。 —Richard Nowakowski, MAA Reviews Aaron Siegel在过去十多年中一直是组合博弈论的主要贡献者。在这部权威著作中,他公布了该理论的最新成果,以使该学科在数学中取得应有的地位。 —Richard Guy, University of Calgary -
中考数学选择填空解答压轴好题妙解365王世堃本书精选了365道中考数学中的选择题、填空题和解答题,归纳总结出了中考试卷中的选择题、填空题和解答题的解题方法和技巧,题型全面,可开拓考生的视野,进一步提高考生的解题速度。本书适合参加中考的学生及初中教师参考使用。 -
广义逆的理论与计算马海风《广义逆的理论与计算》研究了广义逆的新理论和计算方法,主要包括加权M-P广义逆,加权DRAZIN逆和核逆的扰动理论及广义逆的神经网络算法,其中介绍广义逆的神经网络算法的专著在国内比较少。《广义逆的理论与计算》适合计算数学、应用数学的研究生和科研工作者参考阅读。 -
数学概念的进化[美]雷蒙德·路易斯·怀尔德 著; 刘鹏飞,程晓亮,王洋,冯志新 译本书作者雷蒙德·路易斯·怀尔德是美国著名拓扑学家,从20世纪50年代起,他一直致力于把数学描绘成一个“不断进化的文化体系”。本书是他第一本数学哲学著作,集中体现了他的数学文化哲学思想,被数学家们誉为“数学哲学人文主义转向”的标志,对数学教育的人文主义复兴和数学文化研究起到了积极的促进作用。本书可作为我国数学教育研究者的学术参考书和一线中小学数学教师的教学参考书。 -
通过解题学习代数几何Thomas Garrity, Rich几百年来,代数几何一直是数学的重要领域。尽管它最初起源于对圆、椭圆、双曲线和抛物线的研究,但这不是一个容易进入的领域。 本书包含一系列练习题,还有一些背景知识和解释,从圆锥曲线开始,最后讲到层与上同调。第一章讲述了圆锥曲线,适合大学一年级的学生(甚至高中生)阅读。第二章引导读者理解三次曲线的基础知识,而第三章介绍了更高次数的曲线。这两章要求读者学过多元微积分和线性代数的知识。第四章和第五章研究了比曲线更高维的几何对象。抽象代数现在扮演着至关重要的角色,因此阅读本书需要读者学习抽象代数入门课程。最后一章是关于层和上同调的,为代数几何前沿研究提供了线索。 -
数的几何基础朱尧辰数的几何是数论的一个经典分支,本书给出它的基本结果和一些数论应用。基本结果包括凸体和格的性质、Minkowski第一和第二凸体定理、Minkowski-Hlawka容许格定理、Mahler列紧性定理、二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。 -
基于Bayesian统计推断的粒子滤波技术及应用翟永智 著.本书针对大数据决策理论中涉及的安全可靠风险问题,以及可靠性与精确性的制约折中优化的问题,将研究的重点主要集中于基于Bayesian统计推断的粒子滤波算法的研究和应用,在论述粒子滤波算法的同时,主要融入了作者新的研究思想,即点估计观测值 先验概率,同时将多尺度的概念融入粒子滤波中,形成了具有多尺度粒子滤波的算法,利用不同粗细尺度对动态系统状态空间中的一条马尔可夫链进行交替耦合采样,借助于传递和更新状态信息及参数信息来搜索状态和参数的最大联合后验分布似然函数。细尺度的重要采样能保持精度,粗尺度的重要采样能提高运算效率,粗细尺度交替耦合采样则能有效抑制粒子的退化现象。本书为深度学习人工智能并深入研究奠定坚实的理论基础。本书适合对大数据、统计信号处理、数字孪生系统故障传播根因诊断以及人工智能研究领域感兴趣的高年级本科生、硕士研究生、博士研究生及从事相关领域研究的科研人员参考阅读。 -
拟微分算子陈恕行 著拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。 -
基于R-INLA的空间与时空贝叶斯模型Marta Blangiardo贝叶斯方法因其灵活性且可以轻松地将相关性和层次结构正式纳入数据中,所以对包括空间和时间信息在内的大型数据集建模尤为有效。然而,其所依赖的诸如马尔可夫链蒙特卡罗(MCMC)等经典模拟方法在计算上会使之变得不可行;本书所介绍的积分嵌套拉普拉斯近似(INLA)方法则可作为一种计算有效且强有力的MCMC的替代方法。 本书介绍了贝叶斯方法的基本范式,并阐述了相关的计算问题;详细介绍了 INLA 方法和 R-INLA 软件包背后的理论,并把重点聚焦在区域和点参考数据的空间和时空建模上。 全书将详细的理论和实际数据分析相结合,对任何水平的读者都会大有裨益。所有示例都提供基于R-INLA的代码,其数据集可在INLA 网站获得,这对于想了解INLA 方法或提高其实践能力的应用研究人员来说,是一个极具吸引力的特点。
