数学
-
广义微分几何讲义[法]帕特里克·伊格莱西亚斯 - 泽穆尔(Patrick Iglesias-Zemmour)《广义微分几何讲义》是为对微分几何感兴趣的学生准备的,尤其是那些在经典理论未涵盖的几何情形。它是已出版的《广义微分几何》(Diffeology)的配套教学笔记,一半源自作者在汕头大学访问时的专题讲座,一半则是作者在同各方学者多年研究探讨后的研究成果、思考、练习等作者希望与读者分享的笔记。全书以时间线为轴,讲述Diffeology领域的起源和发展,编排合理,每章篇头都有总述、定义、理论等讲解,辅以推论过程,由简到难,自然过渡到结论,很符合授课讲义的风格,其后还有习题、问题、思考探讨等用以巩固讲义知识,并启发思考,对研究微分几何或数学物理的学生与研究人员非常有用。 -
实分析中的问题与解答(日)畑政义 著 陈青宏 译本书包含一百五十多道数学问题,这些问题主要与数学分析有关,还进一步扩展了 Bernoulli数、微分方程和度量空间的主题.书中同时给出了这些问题的解答,包括相关提示 和解题技巧,供读者理解与掌握.每一章都有一个要点总结,其中还有一些基本定义和结论, 包含了许多对数学分析中一些重要数学结果的简要历史评论以及参考文献。 本书可作为本科生在微积分和线性代数课程期间或之后的习题集,对学习解析数论也 具有一定的指导意义. -
120个奇妙的代数问题及20个奖励问题[美]蒂图.安德雷斯库 著 罗炜 译本书共包含26章,给出了120个代数问题及其详细的解答,还给出了20个附加的奖励问题及其解答.本书大部分题目给出了多个解法,进一步加强了对本书的阐述.前4章是基础,为了帮助读者熟悉和掌握代数的相关概念,因此讨论了这些概念的实际用途,并且利用本书前面的概念重新探讨了多项式对于代数的意义,并进一步扩展了更复杂的应用.本书适合高等院校师生、准备参加数学奥林匹克竞赛的学生和对此部分感兴趣的读者参考阅读. -
数学分析培优12讲刘小松,朱香玲,杨鎏 编本书为“985-211丛书”中的提高简程,对考研和数学竞赛中的数学分析解题方法和策略进行了归纳和总结,是在编者多年讲授数学分析、数学分析选讲、考研数学材料的基础上,多次修订而成,同时补充了考研数学分析综合试题的解题方法和策略。本书共分为12讲,内容主要包括一元函数微积分、多元函数微积分、无穷级数及含参变量积分等。本书系统全面,例题丰富,思路新颖,注重基础,适用于高等院校数学类各专业的学生学习“数学分析”课程及报考研究生复习使用,也可供从事数学分析教学的年轻教师参考使用。 -
非线性规划的优化算法研究汪春峰非线性规划问题在经济和工程等领域中普遍存 在,具有广泛的应用价值。随着社会的发展,非线 性规划问题的规模和结果也越来越复杂,要获得相 应问题的 解也变得越来越困难。 化方法是 解决这些问题强有力的工具,人们提出了许多求解 非线性规划问题的 化方法。这些方法在机理上 大致可以分为确定性 化方法和随机性 化方 法两类,这两种方法各有千秋。 本书介绍几个求解非线性规划问题的确定性 优化方法和随机性 化方法。全书内容共10章, 分为PARTⅠ和PARTⅡ两部分。PARTⅠ针对比式和规 划、多乘积规划、几何规划等工程上出现的 化 问题,提出了几个有效的分支定界算法,并证明了 算法的收敛性,该部分属于确定性 化方法。PARTⅡ针对群智能 化方法中的萤火虫算法及粒 子群算法的改进做了研究,探讨了收敛性等相关问 题,该部分属于随机性 化方法。 本书面向优化领域的研究人员,包括人工智能 、应用数学等专业的高年级本科生和研究生。 -
中国数学奥林匹克国家集训队选拔试题背景研究刘培杰数学工作室 编本书汇集了自1986—2019年中国数学奥林匹克国家集训队的选拔试题及解答,其中一些试题给出了多种解法,具有一题多解、解法多样的特点,且注重了初等数学与高等数学的联系。本书可归结出四个特点,即收集全、解法多、观点高、结论强。能够使感兴趣的读者在读本书的过程中发散思维,更好地理解题目,同时更好地掌握相应的知识点。本书适合参加数学奥林匹克竞赛的学生备考使用,也可供高中数学教师及数学爱好者参考阅读。 -
《九章算法比类大全》校注钱塘南湖后学吴敬信民本书是明朝三大数学名著之一,是我国数学史、珠算史上百科全书式的重要著作,内容几乎涉及现代初等数学、珠算的所有内容,故称为“大全”。本书适合大中小学数学教师及广大数学爱好者阅读. -
4维流形与Kirby演算Robert E. Gompf,András I. Stipsicz过去的二十年间,四维流形理论经历了爆炸性增长。目前有许多书籍从规范理论或代数几何等不同角度来探讨这一主题。然而,本书提供了一种从拓扑学角度来阐述的方法。它弥合了与其他学科之间的鸿沟,并介绍了经典但重要的拓扑技术,这些技术以前在文献中并未出现过。本书的第一部分以研究生二年级水平介绍了该理论的基础知识,并概述了当前的研究动向。第二部分专门讲述了Kirby演算,即四维流形上的手柄体理论。这部分内容既基础又全面。第三部分深入探讨了当前四维流形研究的广泛课题。其中包括分支覆盖和复杂曲面地理学、椭圆和Lefschetz纤维化、h-可边界、辛四维流形和Stein曲面等课题。书中还提供了应用示例,配有300多幅插图和大量习题及解答。本书以拓扑学的观点展开,向读者介绍了该领域的经典技术,并涵盖了相关研究的最新进展。它对于研究人员和学生们深入理解四维流形理论以及在其他学科中的应用具有重要意义。 -
数学文化览胜集李国伟面对21世纪国际上人才竞争的激烈形势,中国数学界自然非常关注数学教育的状况,有些令人尊敬的数学家已经把目光从超常教育或精英人才的培养,移往面向广大普通学生的数学教育。我们应该敞开胸怀,把握时代的脉搏,以丰富多样的数学教育内容让学生感受数学与文化、历史、艺术等各种知识的关联互动,使他们能够在终身学习历程中随个人需求适时获取。 本书中“教育”涵盖的范围取宽松的解释,从强调小学数学教育的重要性到研究领域的评估,由事关学校的正规教育到涉及社会的普及教育,虽然看似有些散漫芜杂,但是贯穿作者的观点的基调,仍然是伸张主流之外的声音,维护多元发展的氛围。 -
全局分支与混沌(美) 斯蒂芬·威金斯本书主要介绍确定性动力系统理论中的高维全局分支与混沌理论的解析方法,主要内容包括常微分方程和动力系统的基本概念,结构稳定性、通有性、横截性,Smale马蹄映射,高维Poincare映射,不变集与不变环面,符号动力系统,判定混沌存在的准则,同宿运动与异宿运动,Melnikov向量等。本书可作为动力系统相关专业的研究生的教材和专家、学者的参考资料。
