数据库挖掘/数据仓库
-
面向序列数据的多视图方法杨燕,江永全,李天瑞真实世界中的序列数据随时间推移呈爆炸式增长,如何设计面向序列数据的知识发现方法是当前研究的热点之一。本书以深度学习和多视图学习为理论基础,以序列数据为研究对象,为面向序列数据分析提供多视图的学习方法与技术,同时为典型场景下的序列数据分析提供多视图深度学习解决方案,以期为序列数据分析、多视图学习领域的研究及应用提供参考。本书针对序列数据的动态性、突变性、不确定性和时空关联性等特点,探讨多视图学习理论,构建面向序列数据的多视图方法,概述基础理论与传统方法,并系统地介绍多视图序列数据应用领域的研究理论、算法及成果。 -
数据存储架构与技术舒继武本书介绍数据存储架构与技术,涵盖存储盘与存储介质、存储阵列、存储协议、键值存储、文件系统、网络存储体系结构、分布式存储系统、存储可靠性、存储安全、数据保护等基础内容,对存储维护、存储解决方案、存储技术趋势与发展等主题进行了深入讨论,以新的研究成果作为案例,同时提供习题帮助读者加深对数据存储的理解与运用。本书适合计算机及相关专业高年级本科生或研究生阅读、学习,同时也可供相关专业技术人员参考。 -
多模态数据下的推荐算法及在线评论行为研究管悦以图像和文本为代表的多模态数据为用户线上购买和交友决策过程提供了重要信息参考。本书基于推荐及评论这两个重要的用户决策支持系统,主要研究了基于多模态数据的推荐算法设计以及多模态数据对用户评论行为产生的影响。本书的特色在于聚焦数字经济平台的重要领域,关注了平台的两个核心功能——推荐功能和评论功能,并深入研究了多模态数据在其中所具有的价值和所起到的作用。全书共6章,内容包括选题背景;与平台推荐和评论系统相关的已有研究成果;基于多模态数据的推荐算法设计;评论系统中用户生成图像对后续消费者决策所产生的影响;未来发展趋势。《多模态数据下的推荐算法及在线评论行为研究》主要面向高等院校管理科学与工程、信息管理相关专业高年级本科生及研究生,也为推荐算法、多模态数据分析相关研究领域的广大科技工作者和研究同行提供参考。 -
数据挖掘竞赛实战许可乐本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案进行深入分析,并提供方案对应的实现代码。本书适合数据挖掘竞赛爱好者、人工智能相关专业在校大学生、人工智能方向从业人员及对人工智能感兴趣的读者阅读。 -
大数据分析技术王建平、傅翠本书共分为八章,分别为数据分析概述、外部数据的获取、数据处理、函数的应用、数据透视表与数据透视图、数据分析与可视化、Excel数据分析实例、撰写数据分析报告。本书注重平衡理论知识和实践应用,每章都包含了实际应用案例和实训活动,以帮助读者深入理解和掌握所学知识。本书既可作为中等职业院校计算机类专业课程教材,也可作为相关企业培训教材。 -
数据分析与预测算法[美]拉斐尔·A. 伊里萨里本书介绍可以帮助读者处理真实数据分析挑战的概念和技能。它涵盖了概率论、统计推断、线性回归和机器学习等概念。它还帮助读者提升如下技能:R编程、数据清洗、数据可视化、预测算法构建、使用UNIX/Linux shell组织文件、使用Git和GitHub进行版本控制以及可复制的文档准备。全书分为六个部分,分别为R、数据可视化、统计与R、数据清洗、机器学习和生产力工具。 -
从零开始学Power BI商业数据分析刘鑫《从零开始学Power BI商业数据分析(视频教学版)》从Power BI的基础知识讲起,然后逐步深入Power BI的进阶提升知识,最后配合项目实战案例,展示如何使用Power BI进行数据清洗、数据统计和数据可视化等相关操作,从而帮助零基础的数据分析人员快速上手。《从零开始学Power BI商业数据分析(视频教学版)》共10章,分为3篇。第1篇“基础知识”,主要介绍Power BI的下载和注册方法,以及相关组件的用法和数据导入方法,并详细介绍Power Query的基础知识。第2篇“进阶提升”,主要介绍数据建模、度量值、常用的度量值应用案例、可视化看板的制作和Power BI在线版等相关知识。第3篇“项目案例实战”,主要介绍如何用Power BI制作数据大屏、多页面交互式可视化看板和分析报告3个实战案例,展现数据清洗、数据统计和数据可视化的整个流程。《从零开始学Power BI商业数据分析(视频教学版)》通俗易懂,案例丰富,实用性强,适合Power BI的入门与进阶读者阅读,尤其是从事数据分析、商业分析、运营、人力管理和财务管理等经常与数据打交道的相关人员阅读,另外还适合相关培训机构的数据分析学员阅读。 -
科技大数据的建模与分析技术周向东,刘德兵,王元卓,王尧科技大数据的建模理论与分析方法是科技大数据相关技术研究与服务平台建设的重要理论基础和应用方法论。科技大数据主要由非结构化和复杂结构数据组成,涉及广泛而丰富的建模理论和方法。本书内容侧重面向科技大数据应用的基于张量的非结构数据建模、知识图谱及迁移学习等的基本概念及理论,同时介绍相关理论在认知图谱、跨域图像分类以及学者研究兴趣及机构合作关系挖掘等方面的应用。 -
大数据技术朱扬勇 主编本书全面介绍了数据开发利用技术,包括大数据计算、大数据管理、大数据安全、大数据可视化、数据自治、数据爬虫、知识图谱、大数据挖掘、深度学习、区块链等技术,还特别介绍了数据产品生产技术。这些技术涵盖了数据获取与管理、数据分析与应用、数据安全与流通等数据开发利用的各个环节,形成一个较为完整的大数据技术体系。 -
数据工程基础Joe Reis数据工程在过去十年间发展迅速,许多软件工程师、数据科学家和分析师都在寻找相关实践的全面观点。通过这本实践用书,你将学习如何通过评估数据工程生命周期框架中可用的最佳技术来规划和构建系统,以满足你的组织和客户的需求。作者Joe Reis和Matt Housley将为你介绍数据工程的生命周期,向你展示如何综合运用各种云技术,以满足下游数据消费者的需求。你将理解如何应用数据生成、摄取、编排、转换、存储和治理的概念,无论底层技术是什么,这些概念在任何数据环境中都至关重要。
