人工智能
-
智能机器人养成记[英] 马克·H.李(Mark H.Lee) 著,刘红泉 译在本书中,作者先描述了人工智能的缺陷(一个关键的缺点是:它没有具象化),然后提出了一种制造类人机器人的不同方法:成长型机器人,它受到成长心理学及其对早期婴儿行为的描述的启发。他讲述了自己对iCub类人机器人的实验,以及它从新生儿水平到相当于9个月大的婴儿的能力水平的成长,解释了iCub如何从自己的经验中学习。 -
深度学习基础与工程实践郭泽文 著本书以工程实践为主线,基于TensorFlow 2.0软件框架详细介绍了深度学习的工作原理和方法,并以实际代码为例,剖析了构建神经网络模型的流程、全连接网络的运行原理、卷积神经网络的结构与运行机制、循环神经网络的结构与运行机制,讨论了使用Dense、Conv1D、Conv2D、SimpleRNN、LTSM、GRU、Bidirectional等深度学习模型解决计算机视觉、序列问题的方法,并在此基础上基于具体示例介绍了深度学习的高阶实践。 本书致力于为人工智能算法工程师及从事人工智能引擎相关工作的人提供理论与实践指导,适合对人工智能及其应用感兴趣的读者阅读。 -
深度学习入门与实践鲁鸣鸣 编本书首先以图文并茂的形式深入浅出地介绍了机器学习和深度学习的基本概念,阐明了机器学习和深度学习的本质是对待学习的函数进行拟合这一基本概念。通过介绍基础的线性回归、分类、逻辑回归等机器学习问题及其关系,建立机器学习与概率分布、贝叶斯理论、矩阵运算之间的关联,并以较为直观同时也兼具理论高度的方式引出逻辑回归与人工神经元之间的关联,从而为人工(深度)神经网络的引入做好铺垫。接着,本书从深度学习基本概念、典型模型和应用、反向传播算法、编程实现、训练技巧等方面较为详尽地介绍了深度学习的基础内容。最后通过介绍卷积神经网络、词嵌入、循环神经网络等典型的深度学习模型来进一步提升初学者对深度学习的认识。本书能够帮助中南大学以及其他高校的大数据专业、人工智能专业的本科生用最快的速度入门深度学习。 -
从零构建知识图谱邵浩,张凯,李方圆,张云柯,戴锡强 著这是一本能让读者快速从零开始构建工业级知识图谱的著作。作者是知识图谱和自然语言处理领域的专家,本书得到了OpenKG联合创始人王昊奋、清华大学教授李涓子、东南大学教授漆桂林、美团知识图谱团队负责人张富峥、文因互联创始人鲍捷等学界和业界知识图谱扛旗人的一致好评和推荐。 本书不仅详细讲解了知识图谱的技术原理和构建工具,而且还循序渐进地讲解了知识图谱的构建方法、步骤和行业应用。配有大量实战案例,并且开放了源代码,确保读者能学会并落地。 全书一共8章: 第1章介绍了知识图谱的概念、模式、应用场景和技术架构; 第2章围绕知识图谱的技术体系,详细阐述了知识的表示与建模、抽取与挖掘、存储与融合,以及检索与推理; 第3章通过具体的实例介绍了各种知识图谱工具的使用; 第4章和第5章从工业实践的角度讲解了从0到1构建通用知识图谱和领域知识图谱的步骤和方法,并配备详细的代码解读; 第6~7章讲解了知识图谱的具体应用和一个综合性的知识图谱案例——问答系统,进一步指导读者实践; 第8章对知识图谱的未来发展进行了总结和展望。 -
深度学习经典案例解析赵小川 著《深度学习经典案例解析(基于MATLAB)》分为“基础篇”“应用篇”和“实战篇”。通过17个案例循序渐进地介绍了深度学习网络的构建、训练、应用,以及如何基于MATLAB快速生成可执行的C、C++代码并在硬件上部署实现,内容讲解由浅及深、层层递进。 《深度学习经典案例解析(基于MATLAB)》所讲解的案例均配有代码实现,并对代码进行了详细注解,读者可通过阅读代码对《深度学习经典案例解析(基于MATLAB)》讲解的内容进行更加深入的了解。 《深度学习经典案例解析(基于MATLAB)》适合对人工智能、深度学习技术感兴趣的工程技术人员阅读,也适合人工智能、计算机科学技术相关专业的本科生、研究生学习参考。 -
TensorFlow人脸识别实战王晓华 著使用深度学习进行人脸识别是近年来AI研究的热点之一。该书使用TensorFlow 2.1作为深度学习的框架和工具,引导读者从搭建环境开始,逐步深入代码应用实践中,进而达到独立使用深度学习模型完成人脸识别的目的。《TensorFlow人脸识别实战(人工智能技术丛书)》分为10章,第1、2章介绍人脸识别的基础知识和发展路径;第3章从搭建环境开始,详细介绍Anaconda、Python、PyCharm、TensorFlow CPU版本和GPU版本的安装;第4-6章介绍TensorFlow基本和高级API的使用;第7章介绍使用原生API处理数据的方法和可视化训练过程;第8章是实战准备,介绍ResNet模型的实现和应用;第9、10章综合该书前面的知识,学习人脸识别模型与人脸检测这两个实战项目。《TensorFlow人脸识别实战(人工智能技术丛书)》内容详尽、示例丰富,是机器学习和深度学习初学者必备的参考书,同时也非常适合高等院校和培训机构人工智能及相关专业的师生教学参考。 -
Python深度学习实战吕云翔,刘卓然 著本书以深度学习框架PyTorch为基础,介绍机器学习的基础知识与常用方法,全面细致地提供了基本机器学习操作的原理和在深度学习框架下的实践步骤。全书共16章,主要分别介绍了深度学习基础知识、深度学习框架及其对比,机器学习基础知识,深度学习框架基础,Logistic回归,多层感知器,计算机视觉,自然语言处理以及8个实战案例。本书将理论与实践紧密结合,相信能为读者提供有益的学习指导。?? 本书适合Python深度学习初学者、机器学习算法分析从业人员以及高等院校计算机科学、软件工程等相关专业的师生阅读。 -
基于深度学习的目标检测与识别技术谭志 著本书从深度学习的发展历程开始,系统介绍了基于深度学习的目标检测的基本问题及其相关处理方法与技术,主要内容涉及两阶段和单阶段目标检测的理论、算法和研究成果。本书共6章,包括深度学习神经网络类型、目标检测技术、基于Faster R-CNN的目标检测改进算法、领域自适应及其在目标检测技术上的典型应用、图像识别模型改进及面部表情识别、结论与展望等内容。 本书主要面向人工智能、自动化、电子信息、计算机等专业高年级本科生以及控制科学与工程、信息与通信工程、计算机科学与技术等学科研究生,帮助读者了解目标检测技术的发展过程、基本知识与原理,同时也可供高校相关专业教师、科研人员和工程技术人员阅读参考。 -
TensorFlow语音识别实战王晓华 著《TensorFlow语音识别实战/人工智能技术丛书》使用新的TensorFlow2作为语音识别的基本框架,引导读者入门并掌握基于深度学习的语音识别基本理论、概念以及实现实际项目。《TensorFlow语音识别实战/人工智能技术丛书》内容循序渐进,从搭建环境开始,逐步深入理论、代码及应用实践,是语音识别技术图书的好选择。《TensorFlow语音识别实战/人工智能技术丛书》分为10章,内容包括语音识别概况与开发环境搭建、TensorFlow和Keras、深度学习的理论基础、卷积层与MNIST实战、TensorFlowDatasets和TensorBoard详解、ResNet模型、使用循环神经网络的语音识别实战、有趣的词嵌入实战、语音识别中的转换器实战、语音汉字转换实战。《TensorFlow语音识别实战/人工智能技术丛书》内容详尽、示例丰富,适合作为语音识别和深度学习初学者必备的参考书,同时非常适合作为高等院校和培训机构人工智能及相关专业师生的参考教材。 -
人与机器听觉(美)理查德·F.里昂(Richard F.Lyon)《人与机器听觉:听见声音的意义》由谷歌首席科学家Lyon撰写,是一部关于听觉研究的系统性学术著作。《人与机器听觉:听见声音的意义》中提出利用CARFAC模型模拟耳蜗对声音信号的分析,利用带有精细时序结构的SAI表征听觉神经模式,明确反对将耳蜗视作傅里叶频率分析器的做法。《人与机器听觉:听见声音的意义》内容系统且全面,涵盖人类听觉原理、机器听觉理论、精密听觉模型建模和机器听觉应用实例,还包括对听觉研究史上的标志性人物及事例的介绍。《人与机器听觉:听见声音的意义》对数学原理的阐释脉络清晰,并配有算法源码,适合相关领域的技术人员和研究人员参考,也适合作为高等院校相关研究生课程的教材。《人与机器听觉:听见声音的意义》构建了一套完整的听觉理论框架,具有鲜明的学术观点和创作特色:创造性地提出利用CARFAC模型模拟耳蜗对声音信号的分析,利用带有精细时序结构的SAI表征听觉神经模式,强调将听觉模型引入机器听觉应用,反对将耳蜗视作傅里叶频率分析器的做法。将听觉系统划分为四层,在底层听觉过程模拟的基础上探索高层信息处理机制并验证模型的有效性,为远近场模型等问题的解决以及CASA等技术的落地提供理论支撑,同时拓展了研究思路。全面涵盖人类听觉原理、机器听觉理论、精密听觉模型建模方法以及利用机器学习方法构建的应用实例,不仅对研究现状进行了系统梳理,而且穿插着对听觉研究史上标志性人物和事例的介绍。对听觉问题的阐释直击本质,对相关数学表述及推导过程的讲解尤为清晰明了,无须复杂的专业知识也能逐步理解。此外,所有听觉处理算法均配有可免费下载的源代码,便于读者实践。
