人工智能
-
触力觉人机交互导论张玉茹本书总体目标是介绍触力觉人机交互的现状、发展趋势和重要应用,为读者在机器人、虚拟现实、生物工程、认知科学等领域开展跨学科研究和技术开发打下基础。全书共8章,主要内容包括触力觉人机交互概述、人体触力觉感知和运动控制的生理基础、桌面式力觉交互设备、力觉合成方法、桌面式力觉交互系统、振动触觉交互、纹理触觉交互、触力觉人机交互前沿等。通过本书的学习,读者可以了解触力觉感知的生理基础知识,学习如何研制和使用触力觉交互设备、如何设计实现触力觉合成算法、如何开发触力觉人机交互仿真系统。本书既可作为机械工程、计算机科学与技术、电子信息工程、自动化、虚拟现实技术、机器人工程、生物医学工程等专业研究生和高年级本科生的教材,也可作为相关行业科研人员的参考书。
-
面向共融机器人的自然交互徐华共融机器人是能够与作业环境、人和其他机器人自然交互、自主适应复杂动态环境并协同作业的机器人。“敏锐体贴型”的自然交互是共融服务机器人的研究热点问题之一。当前迫切需要机器人与人具有交互对话意图的理解能力。《面向共融机器人的自然交互:人机对话意图理解》立足基于深度学习方法的人机理解领域,从人机对话意图理解出发,系统介绍了人机对话中的意图识别、未知意图检测和新意图发现的方法。《面向共融机器人的自然交互:人机对话意图理解》是国内共融机器人自然交互领域一本系统介绍交互对话意图分析的专业书籍,可为读者提供共融机器人研究领域人机对话意图分析的关键技术和基础知识,追踪该领域的发展前沿提供重要的学习和研究参考。
-
MLOps实践――机器学习从开发到生产李攀登在大数据时代,机器学习(ML)在互联网领域取得了巨大的成功,数据应用也逐渐从“数据驱动”阶段向“模型驱动”阶段跃升,但这也给ML项目落地带来了更大的困难,为了适应时代的发展,MLOps应运而生。本书从多个方面介绍了MLOps实践路径,内容涵盖了设计、构建和部署由ML驱动的应用程序所需的各种实用技能。 本书适合数据科学家、软件工程师、ML工程师及希望学习如何更好地组织ML实验的研究人员阅读,可以帮助他们建立实用的MLOps实践框架。
-
风火少年战AI计湘婷,文新,刘倩,李轩涯本书以耳熟能详的人物——哪吒作为主线介绍人工智能中的自然语言处理、计算机视觉、音视频处理、图像处理等基础知识,并通过大量生活中的典型案例,帮助读者了解如何利用人工智能解决生活中的实际问题。
-
人工智能及其航空航天应用王黎静人工智能时代已经来临,航空航天作为****早的信息科技产业应用技术领域之一,迫切需要开设人工智能技术及其在航空航天领域应用的课程,为人工智能在航空航天领域人才的培养、学科的发展提供条件。本书重点介绍了人工智能是什么、人工智能在航空航天领域能做什么,选取线性回归、逻辑回归、神经网络、聚类、降维、异常检测、深度学习、强化学习,结合人工智能在航空航天领域应用的案例解释人工智能的应用,以点带面,传授人工智能的基本知识、人工智能的算法理论及其应用方式。本书适用于航空航天、机械专业本科生和研究生的专业学习,也可供有关科研人员参考。
-
仿人机器人建模与控制(日)德拉戈米尔·N.涅切夫本书由来自日本的三位机器人专家撰写,主要讲解仿人机器人的分析、设计和控制中使用的模型。首先介绍仿人机器人领域的发展历史,总结当前的先进成果。接下来介绍运动学、静力学和动力学相关的理论基础,并对双足平衡控制方法进行了综述。然后讨论多指手机器人、双臂机器人和多机器人系统的协作物体操作的模型和控制算法。之后介绍仿人机器人的运动生成和控制,以及这些技术的应用。后介绍仿真环境,并提供使用基于MATLAB的模拟器进行动力学仿真的详细步骤。本书要求读者具备一定的背景知识,适合进阶阶段的研究人员阅读。
-
PyTorch开发入门杜世桥 著《PyTorch开发入门:深度学习模型的构建与程序实现》以PyTorch为主要内容,介绍了其安装和实际应用,共7章。其中,第1章介绍了PyTorch的包结构;第2章介绍了线性模型,并通过PyTorch的实际使用来实现线性回归模型和逻辑回归模型;第3章介绍了神经网络,实际使用PyTorch创建一个多层感知器(Perceptron);第4章介绍了通过卷积神经网络(CNN)进行的图像处理,通过PyTorch实际进行CNN的图像分类,低分辨率图像到高分辨率的转换,使用深度卷积生成对抗网络(DCGAN)进行新的图像生成以及迁移学习;第5章介绍了通过循环神经网络(RNN)进行的自然语言处理,通过PyTorch实际进行文本的分类和文本的生成以及基于编码器-解码器模型的机器翻译;第6章介绍了矩阵分解以及推荐系统的神经网络构建;第7章介绍了PyTorch模型的应用程序嵌入,WebAPI的实际创建,Docker的打包发布,以及基于*新开放神经网络交换(ONNX)标准的模型移植。
-
可解释人工智能导论杨强,范力欣,朱军,陈一昕,张拳石,朱松纯 等本书全面介绍可解释人工智能的基础知识、理论方法和行业应用。全书分为三部分,共11 章。第一部分包括第1章,揭示基于数据驱动的人工智能系统决策机制,提出一种基于人机沟通交互场景的可解释人工智能范式。第二部分为第2~5 章,介绍各种可解释人工智能技术方法,包括贝叶斯方法、基于因果启发的稳定学习和反事实推理、基于与或图模型的人机协作解释、对深度神经网络的解释。第三部分为第6~10 章,分别介绍可解释人工智能在生物医疗、金融、计算机视觉、自然语言处理、推荐系统等领域的应用案例,详细说明可解释性在司法、城市管理、安防和制造等实际应用中发挥的积极作用。第11 章对全书进行总结,并论述可解释人工智能研究面临的挑战和未来发展趋势。此外,本书的附录给出可解释人工智能相关的开源资源、中英文术语对照及索引,方便读者进一步查阅。 本书既适合高等院校计算机和信息处理相关专业的高年级本科生和研究生,以及人工智能领域的研究员和学者阅读;也适合关注人工智能应用及其社会影响力的政策制定者、法律工作者、社会科学研究人士等阅读。
-
TensorFlow Lite移动端深度学习朱元涛 著TensorFlow Lite移动端深度学习循序渐进地讲解了在移动设备中使用TensorFlow Lite开发机器学习和深度学习程序的核心知识,并通过具体实例演练了各知识点的使用方法和流程。全书共9章,分别讲解了人工智能开发基础、编写个TensorFlow Lite程序、创建模型、转换模型、推断、优化处理、微控制器、物体检测识别系统和姿势预测器。全书简洁而不失技术深度,内容丰富全面,以简明的文字介绍了复杂的案例。同时书中配有二维码视频,结合视频讲解可加深对相关内容的理解,是学习TensorFlow Lite开发的实用教程。 TensorFlow Lite移动端深度学习适用于已经了解Python语言基础语法和TensorFlow基础,希望进一步提高自己Python开发水平的读者阅读,还可以作为大中专院校和相关培训学校的专业教程。
-
机器学习数学基础齐伟 著《机器学习数学基础》系统地阐述机器学习的数学基础知识,但并非大学数学教材的翻版,而是以机器学习算法为依据,选取数学知识,并从应用的角度阐述各种数学定义、定理等,侧重于讲清楚它们的应用和实现方法。所以,《机器学习数学基础》这一书中将使用开发者喜欢的编程语言(Python)来实现各种数学计算,并阐述数学知识在机器学习算法中的应用体现。