人工智能
-
基于深度学习的道路短期交通状态时空序列预测崔建勋 等这本书系统阐述了深度学习方法论在道路短期交通状态时空序列预测领域的**研究成果。需要着重说明以下几点:(1)领域限定在了道路交通,因为交通是个大系统,存在着航空、水运、道路等多种运输方式,而本书所阐述的研究均是针对道路交通领域的数据以及面向道路交通领域的应用;(2)本书所讨论的研究问题是道路短期交通状态时空序列预测问题,该问题是时空数据挖掘领域中时空预测问题的一个重要子集,在本书的第1章中将会对这个问题进行数学上的形式化定义;(3)本书针对道路短期交通状态时空序列预测问题的讨论,完全是基于深度学习的方法论,所参考的文献绝大部分发表于2017年以后,并不涵盖前人对该研究问题所采用的全部方法论(如ARIMA,卡尔曼滤波、SVR等)。 -
Scikit-Learn机器学习核心技术与实践谭贞军《Scikit-Learn机器学习核心技术与实践》循序渐进地讲解了使用 Scikit-Learn 开发机器学习程序的核心知识,并通过具体实例的实现过程演练了使用 Scikit-Learn 的方法和流程。全书共10章,包括人工智能与Scikit-Learn 简介,加载数据集,监督学习,无监督学习,模型选择和评估,数据集转换,实现大数据计算,英超联赛比分预测系统(Matplotlib+Scikit-Learn+Flask+Pandas),AI考勤管理系统(face-recognition+Matplotlib+ Django+Scikit-Learn+Dlib),实时电影推荐系统(Scikit-Learn+Flask+Pandas)。本书简洁而不失其技术深度,内容丰富全面,易于阅读。 \n《Scikit-Learn机器学习核心技术与实践》适用于已经了解Python语言基础语法的读者,以及想进一步学习机器学习和深度学习技术的读者,还可以作为大专院校相关专业的师生用书和培训学校的专业教材。 \n -
昆仑子牙练AI计湘婷,文新,刘倩,李轩涯本书以读者熟知的姜子牙的故事为线索,围绕人工智能技术的特色和应用,介绍自然语言处理、机器翻译、计算机视觉等人工智能技术内容,并通过大量实例帮助读者动手实践,掌握用AI解决实际问题的能力。 -
智能无人系统产业发展研究报告张涛本书包含智能无人系统理论技术与产业应用发展总体态势、智能无人系统技术理论及应用创新重点、智能无人系统产业发展趋势和吴国智能无人系统发展重点与机遇四个部分,读者为无人系统领域从业人员,本书的主要特点为对无人系统未来的发展做趋势性研判,能够对相关从业人员予以指导。联盟发布智能无人系统白皮书,探讨以人工智能技术为主要驱动力的智能无人系统发展状况、技术创新重点与产业发展趋势,总结我国发展情况,提出未来发展方向与机遇,以期联合政府、业界、高校共同推动我国智能无人系统的技术创新与产业发展。 -
人工智能黄建朗当前,人工智能技术正在火热发展之中,并广泛应用于生产生活的方方面面,极大地改变了人们的生活。同时,人工智能技术的发展也对更多的领域产生了冲击。本书就以人工智能技术的发展和应用为出发点,讲述人工智能当前的发展现状、机遇和挑战,以及人工智能技术在诸多方面的应用、未来的发展前景等。 在讲述理论的同时,本书还加入了诸多经典案例,并针对人工智能技术在应用上的难点提出了解决方案。对于互联网、人工智能等领域的企业以及从事高新技术的人员而言,本书是一本可操作性极强的实战书。 -
从零开始彭凌西,彭绍湖,唐春明,陈统本书主要介绍数字图像处理基础知识与基于OpenCV和C++的图像编程技术的相关内容,旨在帮助读者尽快掌握数字图像理论知识和编程技术。 本书第1章主要介绍OpenCV基础;第2章主要介绍图像预处理;第3章主要介绍图像分割和数学形态学;第4章主要介绍特征提取与匹配;第5章主要介绍模板匹配与轮廓绘制;第6章主要介绍视频录制与目标追踪;第7章主要介绍三维重建;第8章主要介绍距离测量与角点检测;第9章主要介绍图像识别应用,涉及文字识别、二维码识别、人脸识别和车牌识别等内容;第10章主要介绍基于深度学习的图像应用。书中通过近百个编程实例和项目,帮助读者掌握数字图像处理原理,并进一步掌握数字图像的编程技术。本书不仅适合各类院校相关专业的学生使用,也适合对数字图像编程感兴趣,已有一定的C++编程基础,但没有数字图像基础理论知识的读者阅读。 -
人工智能算法基础唐宇迪 等当前AI图书市场,理论知识与实践经验的脱节,是很多书籍的缺点。本书立足于理论,从实例入手,将理论知识和实际应用结合,目标是让读者能够快速地熟悉人工智能中经典算法。全书分为4篇,共20章。其中第1篇为基础算法篇,主要讲述排序、查找、线性结构、树、队列、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,主要讲述分类算法、回归算法、聚类算法、降维算法和集成算法;第3篇为强化学习算法篇,主要讲述基于价值的强化学习算法和基于策略的强化学习算法;第4 篇为深度学习算法篇,主要讲述神经网络模型算法、循环神经网络算法和卷积神经网络算法等内容。 本书适合从事数据科学与人工智能相关行业的读者阅读。 -
基于深度学习的高分辨率遥感图像场景分类钱晓亮高分辨率遥感图像场景分类是遥感影像解译中的一个关键任务,具有广泛的应用前景。本书介绍了高分辨率遥感图像场景分类的基本知识和现有的研究方法,并系统总结了作者在基于深度学习的高分辨率遥感图像场景分类方面的研究工作。全书共6章,分为4个部分:第一部分(第1章)介绍了高分辨率遥感图像场景分类的的定义、研究背景和现有研究工作,以及本书的主要内容;第二部分(第2章-3章)将特征提取策略和监督方式对高分辨率遥感图像场景分类性能的影响进行了定性分析和定量实验评估;第三部分(第4章-5章)介绍了两种不同解决思路的高分辨率遥感图像场景分类方法来应对人工标注成本较高的问题;第四部分(第6章)对本书的主要内容进行总结,并对未来的研究工作进行展望。第2-5章都附有相关的实验验证工作,以便有兴趣的读者进一步钻研探索。 -
TensorFlow Lite移动端深度学习朱元涛 著TensorFlow Lite移动端深度学习循序渐进地讲解了在移动设备中使用TensorFlow Lite开发机器学习和深度学习程序的核心知识,并通过具体实例演练了各知识点的使用方法和流程。全书共9章,分别讲解了人工智能开发基础、编写个TensorFlow Lite程序、创建模型、转换模型、推断、优化处理、微控制器、物体检测识别系统和姿势预测器。全书简洁而不失技术深度,内容丰富全面,以简明的文字介绍了复杂的案例。同时书中配有二维码视频,结合视频讲解可加深对相关内容的理解,是学习TensorFlow Lite开发的实用教程。 TensorFlow Lite移动端深度学习适用于已经了解Python语言基础语法和TensorFlow基础,希望进一步提高自己Python开发水平的读者阅读,还可以作为大中专院校和相关培训学校的专业教程。 -
机器学习[希] 西格尔斯·西奥多里蒂斯(Sergios Theodoridis) 著《机器学习:贝叶斯和优化方法(原书第2版)》对所有重要的机器学习方法和新近研究趋势进行了深入探索,通过讲解监督学习的两大支柱——回归和分类,站在全景视角将这些繁杂的方法一一打通,形成了明晰的机器学习知识体系。新版对内容做了全面更新,使各章内容相对独立。全书聚焦于数学理论背后的物理推理,关注贴近应用层的方法和算法,并辅以大量实例和习题,适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理、统计/贝叶斯学习、稀疏建模和深度学习等课程的学生参考。此外,《机器学习:贝叶斯和优化方法(原书第2版)》的所有代码均可免费下载,包含MATLAB和Python两个版本。《机器学习:贝叶斯和优化方法(原书第2版)》重要更新及特色:重写了关于神经网络和深度学习的章节,以反映自第1版以来的研究进展。这一章从感知器和前馈神经网络的基础概念开始讨论,对深度网络进行了深入研究,涵盖较新的优化算法、批标准化、正则化技术(如Dropout方法)、CNN和RNN、注意力机制、对抗样本和对抗训练、胶囊网络、生成架构(如RBM)、变分自编码器和GAN。扩展了关于贝叶斯学习的内容,包括非参数贝叶斯方法,重点讨论中国餐馆过程(CRP)和印度自助餐过程(IBP)。追踪新的研究趋势,包括稀疏、凸分析与凸优化、在线分布式算法、RKH空间学习、贝叶斯推断、图模型与隐马尔可夫模型、粒子滤波、深度学习、字典学习和潜变量建模等。提供实用案例分析,包括蛋白质折叠预测、光学字符识别、文本作者身份识别、fMRI数据分析、变点检测、高光谱图像分离、目标定位等。
