人工智能
-
深度学习在生理机能中的应用曹文明,钟建奇随着人们生活质量的提高,人体生理机能健康愈加地受到人们的重视,因此人体的生理机能评估也变得越来越重要。合理科学的生理机能评估对预防生理机能病变、保障人体健康尤为重要。《深度学习在生理机能中的应用》针对复杂的人体运动问题,探索一种基于几何代数的人体运动表征方法,并以机器学习、深度学习为方法,为分析人体运动提供有效的解决方案。《深度学习在生理机能中的应用》介绍了可变形卷积神经网络算法跟踪器、孪生框架SiamFC跟踪算法、人体姿态描述方法、人体姿态朝向描述符以及人体生理机能评估系统。
-
图像处理与深度学习郭明强 著本书内容由浅入深、循序渐进,涵盖了深度学习在图像处理中的应用技术。本书共8章,首先简要介绍图像处理技术,以及深度学习在图像领域中的应用;接着对深度学习在图像处理中的应用技术进行详细介绍,包括图像阴影检测、图像阴影去除、图像噪声处理、图像匀光和匀色等内容;然后对基于卷积神经网络的图像超分辨率重建方法进行讲解;最后以基于深度学习的红树林提取和屋顶提取与绿化评价为例,详细讲解深度学习在图像处理中的应用。
-
图机器学习克劳迪奥·斯塔迈尔,马京京《图机器学习》详细阐述了与图机器学习相关的基本解决方案,主要包括图的基础知识、图机器学习概述、无监督图学习、有监督图学习、使用图机器学习技术解决问题、社交网络图、使用图进行文本分析和自然语言处理、信用卡交易的图分析、构建数据驱动的图应用程序和图的新趋势等内容。此外,本书还提供了相应的示例、代码,以帮助读者进一步理解相关方案的实现过程。
-
树莓派4与人工智能实战项目李伟斌 著本书主要介绍树莓派不同类型的特性,以及树莓派入门所需要的基础知识;涵盖了树莓派GPIO 的不同操作方法,以及树莓派的I2C总线、SPI总线、UART串口、PWM脉宽调制等偏硬件操作的内容; 同时也为读者准备了一些树莓派上常见的服务类型的搭建和配置,包括树莓派推流服务器搭建的方法, 常见数据库MariaDB、PostgreSQL的安装配置操作,MQTT服务器的搭建配置,DHCP服务器的搭建 配置等。此外,还加入了一些比较有趣的实验,例如利用TensorFlow实现对象检测,使用OpenCV制 作一个树莓派扫描仪,或利用OpenCV实现换鼻子的实验,带领读者了解树莓派通过摄像头能够实现 的一些应用。本书为初学者全面入门了解树莓派提供了很好的切入点,使读者可以了解更多树莓派的使用方法 以及操作小技巧。同时,在整体的编程过程中使用了C语言、Python语言及Shell脚本语言等常见语言, 对于拥有此类语言编程经验的用户更友好。希望读者能够在这里找到自己喜欢的实验,并顺利入门树莓派!
-
自动驾驶算法与芯片设计任建峰 著目前自动驾驶的一个发展趋势就是智能化。随着人工智能的飞速发展以及各种新型传感器的涌现,汽车智能化形成趋势,辅助驾驶功能的渗透率越来越高。这些功能的实现需要借助于摄像头、雷达、激光雷达等新增的传感器数据,其中视频处理需要大量并行计算。然而,传统CPU算力不足,而DSP擅长图像处理,对于深度学习却缺乏足够的性能。尽管GPU擅长训练,但它过于耗电,影响汽车的性能。因此,本书着眼于未来,认为定制化的ASIC必将成为主流。本书以自动驾驶的芯片设计为最终目标,来论述设计一个面向未来的自动驾驶SoC芯片的学术支撑和工程实践。本书共13章。其中第1章主要介绍自动驾驶目前遇到的挑战和研究方向。第2~6章重点讲述环境感知以及规划控制方面的算法设计;第7~10章重点讲述深度学习模型的优化和深度学习芯片的设计;第11章和第12章重点讲述具有安全功能的自动驾驶软件架构设计;第13章介绍5G车联网。
-
掌控Python程晨 著《掌控Python .人工智能之语音识别》围绕人工智能领域重要的语音识别技术,面向有一定Python基础的读者讲解语音识别的原理、技术发展和实现方法。 《掌控Python .人工智能之语音识别》共6章,主要内容包括语音识别概述、音频文件的可视化、人工智能和机器学习、语音转换为文本、语音反馈与交互、语音助手。
-
检索匹配康善同 著《检索匹配:深度学习在搜索、广告、推荐系统中的应用》主要介绍了深度学习在互联网核心的三大类业务(搜索、广告、推荐系统)检索系统中的应用。书中详细讲述了检索匹配的理论、演进历史,以及在业务中落地一个基于深度学习算法模型的全流程技能,包括业务问题建模、样本准备、特征抽取、模型训练和预测等,并提供了相应的代码。《检索匹配:深度学习在搜索、广告、推荐系统中的应用》共11章,分为四大部分。第1部分(第1~2章)介绍了深度学习的相关理论知识;第2部分(第3~6章)介绍了业务中如何上线一个深度学习模型,包括标签拼接、特征抽取、模型训练和预测等流程,采用单机实现;第3部分(第7~9章)介绍了检索算法基本理论以及演进历史,并以业内应用较为广泛的双塔模型DSSM为例进行了详细理论解析和代码实现;第4部分(第10~11章)介绍了如何将单机训练模式改造为分布式训练模式,以加快模型的训练速度,从而应对具有海量样本的业务场景。《检索匹配:深度学习在搜索、广告、推荐系统中的应用》为读者提供了全部案例源代码下载和超过180分钟的高清学习视频,读者可直接扫描二维码观看。《检索匹配:深度学习在搜索、广告、推荐系统中的应用》旨在为读者介绍深度学习在互联网业务中落地的方法和实现,主要面向算法工程师、相关领域研究人员和相关专业院校师生。
-
推荐系统李东胜,练建勋,张乐,任侃,卢暾 ... 著推荐系统是互联网时代极具商业价值的人工智能应用之一,30 年来持续受到学术界和工业界的广泛关注。本书作者以一线研发人员的视角和经验,对推荐系统进行总结,尝试从原理与实践两个角度为读者剖析推荐系统。本书首先从原理上介绍各类经典推荐算法及前沿的深度学习推荐算法,然后分析推荐系统领域发展的前沿话题和未来方向,最后结合微软的开源项目Microsoft Recommenders 介绍推荐系统的实践经验。读者可以基于本书提供的源代码,深入学习推荐算法的设计原理和实践方式,并可以基于本书从零开始快速搭建一个准确、高效的推荐系统。本书不仅适合互联网、大数据等相关领域技术人员阅读,也适合高等院校计算机、软件工程、人工智能等专业的本科生和研究生参考。
-
分布式算法精髓[瑞士] 罗杰·沃滕霍弗(Roger Wattenhofer) 著,黄智濒 译互联网是一个分布式系统,无线通信、云计算或并行计算、多核系统、移动网络也是如此。蚁群、大脑甚至人类社会都可以被建模为分布式系统。本书强调这些分布式系统中共同涉及的主题和技术,特别是强调分布式系统设计中的一些基本问题,涵盖通信、协调、容错性、本地性、并行性、打破对称性、同步化、不确定性等。
-
机器学习实战屈希峰,党武娟暂缺简介...