人工智能
-
人工智能教育人工智能与大数据谢浩,纪朝宪智能时代是智慧融入物理世界的新时代,利用5G、物联网、云计算、大数据等技术,将人类智慧融入物理系统,从而使一切都智能化。现在的我们正处于从信息时代向智能时代过渡的阶段。本书以迎接智能时代为主题,重点关注了大数据创造智慧生活,人工智能在智能仓储方向的创新发展,机器视觉和智慧语音等智能感知,迎接智能时代中的智能交互系统与无人系统等人工智能相关内容。本书的主旨在于提升学生对智能技术发展的敏感度与智能社会的适应性,提高参与社会的能力;引导其思考人工智能技术应用过程中个人与社会的关系,思考智能技术为人类社会带来的机遇和挑战,履行个人在智能社会中的责任和义务。
-
神经网络机器翻译技术及产业应用王海峰,何中军,吴华《神经网络机器翻译技术及产业应用》由百度首席技术官王海峰、百度人工智能技术委员会主席何中军、百度技术委员会主席吴华联合撰写,以产业需求为牵引,介绍了新时期机器翻译的产业需求特点、神经网络机器翻译的原理与方法、新技术进展及产业应用。全书兼具理论与实践,既有对原理与方法的介绍,又有丰富的产业应用案例。《神经网络机器翻译技术及产业应用》共九章: 第1章 绪论,首先阐述了机器翻译发展的时代背景和技术发展脉络,从多个角度回顾了机器翻译的发展历程,介绍了当前机器翻译的发展现状以及产业应用需求特点和挑战。 第2章 翻译语料获取与译文质量评价,介绍了翻译语料获取的相关技术以及机器翻译常用的评价方法,包括人工评价、自动评价、面向产业应用的评价。 第3章 神经网络机器翻译,首先介绍了神经网络机器翻译的基本原理和模型结构,接下来介绍了多种翻译模型,后介绍了利用开源工具搭建一个神经网络机器翻译系统的方法。 第4章 高性能机器翻译,结合百度、谷歌等公司的机器翻译系统实践,首先介绍了神经网络机器翻译的产业化进程,然后介绍了常用的提升系统性能的方法,后介绍了开源工具平台中的高性能实现方案。 第5章 多语言机器翻译,首先介绍了数据增强技术以扩充训练数据规模,然后介绍了基于无监督的训练方法以及多种翻译模型,后介绍了近年来快速发展的多语言预训练技术及其在多语言机器翻译上的应用。本章结尾还结合百度、谷歌、脸书等公司的实践,介绍了大规模多语言机器翻译系统。 第6章 领域自适应,介绍了领域自适应技术,通过数据增强、优化训练等多种手段,使翻译模型在具体领域上获得较高的翻译质量。 第7章 机器同声传译,首先介绍了机器同传的主要挑战和发展现状,然后介绍了目前常用的机器同传数据集和评价方式,后介绍了如何使用开源工具搭建一个机器同传系统。 第8章 机器翻译产业化应用,着重介绍了现实生活中机器翻译丰富的产品形式和广泛应用。 第9章 总结与展望,对全书进行了总结,并对机器翻译的未来发展进行展望。
-
ChatGPT使用指南苏江本书将从 ChatGPT 的基础知识、应用场景和案例分析等方面展开讲解。例如, 如何使用 ChatGPT 实现自然语言翻译、如何使用 ChatGPT 学习英语,以及修改 代码、生成表格,甚至开发菜品等,所举例的应用场景中包含了大量的实用技巧 和建议,能帮助读者更好地掌握和应用 ChatGPT 工具。 本书共分为 9 章,各章的主题分明,内容循序渐进。第 1 章对 ChatGPT 进 行了一些基础的介绍,然后以对话的形式带你快速入门;第 2 ~ 5 章分别从学习、 工作、娱乐、代码四个角度介绍了不同领域下 ChatGPT 的应用场景,案例十分丰 富;第 6 章详细介绍了 ChatGPT 的实用指令和 AI 角色的个性化设置,带你探索 ChatGPT 的趣味和实用性,推荐读者重点阅读;第 7 章则对最新的 AI 工具进行 了介绍;第 8 章对未来趋势进行了展望,分享了许多有意思的话题;第 9 章则对 ChatGPT 在诸多细分行业中的创新应用进行了众多举例,或许读者能从这些例子 中获得启发。 希望这本书能够帮助读者更好地理解和应用 ChatGPT 技术,让读者在工作和 生活中更加得心应手。
-
无结构对等网络中的搜索算法与安全机制秦志光,罗绪成,马新新暂缺简介...
-
机器学习的产业实践之路毕然,飞桨教材编写组 编本书的内容章节分为四个部分,从技术原理到项目实践再到商业战略,逐层放开视野。内容涉及基于人工智能技术在产业中做创新业务的方法论,通过交流“思想”和“应用方法论”,使大家掌握机器学习的深层次思想,并理解商业、产品和技术的深层关系。
-
基于深度学习的遥感图像语义分割方法研究王溢琴随着人工智能技术的成熟,图像语义分割方法迎来了飞速发展的机会。语义分割是一种像素级的预测任务,基于全卷积神经网络(FCN)的分割方法,为了获得较高的分割精度,需耗费大量的计算资源。然而随着自动驾驶和移动终端需求的日益增长,在分割精度和分割速度之间进行平衡显得尤为重要,如何在计算力有限的设备上应用语义分割技术、减少计算量、提高运行速度更是成为当前研究的热点。鉴于此,本书以遥感领域作为应用场景,从视觉注意力机制和特征融合的角度,探索轻量级实时语义分割模型算法,在兼顾精度与速度的同时,实现快速准确的语义分割。本书主要研究内容如下。第一,对目前表现突出的卷积神经网络进行梳理。首先,分析卷积神经网络的基础结构及训练过程,阐述经典的卷积神经网络分类模型;其次,剖析语义分割算法中常见的分割网络结构特性,包括对称的编码 -解码结构,使用空洞卷积、深度可分离卷积、空洞空间金字塔池化(ASPP)等的扩张卷积核,轻量级语义分割法等,确立本书网络模型的设计思路,即采用编码 -解码结构,基于轻量级语义分割网络(ENet)来设计网络架构。第二,针对高分辨率遥感图像分割速度较慢,提出一种改进 ENet的实时语义分割模型 SE-ENet。该模型适当剪枝压缩 ENet网络结构,修改ENet网络中的瓶颈结构(Bottleneck)模块,下采样阶段交叉使用多种卷积核,实现各模块的轻量化,具备参数少、计算量低的特点,可实现快速图像分析处理;而融合至模型中的注意力机制,通过压缩和激励操作来重新标定特征通道的权重,增强有益特征权重,深度有序挖掘遥感数据集中的图像特征,保证语义分割的准确性。通过对 3种不同数据集的仿真分析表明,基于 ENet和注意力机制的语义分割网络模型能够较快地实现图像语义分割效果。第三,构建高分辨率遥感图像语义分割数据集,对数据集进行预处理、数据增强后,数据集扩充至 10万余张图像,为相关实验的训练与评估研究提供数据支撑。第四,基于特征融合策略对 SE-ENet模型进一步优化,将下采样模块间的特征图密集连接,生成优化后的网络模型 EFSE-ENet,通过融合浅层和高层的表征信息以获得准确精细的分割结果;实验时适当修改损失函数,增加小类别样本权重,调整学习率衰减方式以提升实验效果,并在DeepGlobe Road Extraction大型数据集上进一步验证模型的泛化能力,证明了其在保持一定精度的条件下可以达到实时分割的效果,兼具高效性。在本书撰写过程中,晋中学院计算机与信息工程系的领导和老师们给予了大力支持和帮助,在此表示衷心感谢!
-
遥感脑理论及应用焦李成,侯彪,刘芳,杨淑媛,王爽,朱浩,马文萍,张向荣针对海量、动态、多维、异构的高分辨率卫星遥感观测数据,通过对高分辨压缩信息的获取(“感”),建立多尺度几何分析的建模(“知”),完成特征的学习和分析(“用”),从而提高对地观测系统的综合利用能力,这已成为遥感技术发展的必然趋势。全书共十五章,系统地论述了遥感脑的理论基础、感知与解译应用及遥感脑系统。第一至第四章主要介绍遥感技术和类脑启发的研究背景及意义,压缩感知基础、遥感成像机理与特性、深度神经网络的最新进展等;第五至第十二章主要介绍作者团队在遥感脑感知与解译两方面的具体相关应用成果;第十三至第十四章主要介绍作者团队研发的遥感脑系统;第十五章主要是展望和总结该领域的主要公开问题。以此抛砖引玉,希望本书能为读者呈现出遥感脑理论和应用等较为全面的脉络、趋势和图景。本书适应于涉及深度学习和图像处理类高年级本科生、研究生,以及广大科技工作者。
-
基于人工智能的城市轨道交通短时客流预测张金雷,杨立兴,高自友内容:本书构建了包括城市轨道交通常态与非常态场景下车站级和网络级短时进站流预测、短时OD流预测、短时断面流预测、以轨道交通为骨干的多模式交通短时客流预测、基于计算机视觉的轨道交通站内关键设施处短时客流预测等在内的一整套智能城市轨道交通短时客流预测体系。具体章节内容安排如下:第1章为绪论。第2章为城市轨道交通车站级常态短时进站流预测。第3章为城市轨道交通网络级常态短时进站流预测。第4章为城市轨道交通车站级与网络级非常态短时进站流预测。第5章为城市轨道交通车站级与网络级短时OD流预测。第6章为城市轨道交通网络级短时断面流预测。第7章为以轨道交通为骨干的多模式交通短时客流预测。第8章为基于计算机视觉的城市轨道交通站内短时客流预测。 读着对象:本书主要面向城市轨道交通运营管理部分科研人员,广大从事交通大数据分析、机器学习或深度学习的专业人员,从事高等教育的专任教师,高等院校的在读学生及相关领域的广大科研人员,可作为各高等院校交通运输、交通工程等专业的本科生和研究生教材。 特色:随着大数据、人工智能等技术的兴起,利于人工智能方法进行短时客流预测的研究兴起,然而目前国内鲜有利用人工智能方法针对城市轨道交通进行短时客流预测的专著,本书为当前鲜有的利用人工智能进行城市轨道交通短时客流预测方法的专著,构建了一整套包括城市轨道交通常态与非常态场景下车站级和网络级短时进站流预测、短时OD流预测、短时断面流预测、以轨道交通为骨干的多模式交通短时客流预测、基于计算机视觉的轨道交通站内关键设施处短时客流预测等在内的一整套智能城市轨道交通短时客流预测体系。
-
数据分析与机器学习算法韩伟本书从数据分析与机器学习算法入手,系统地介绍了机器学习各类算法的原理方法和实际应用。本书的主要内容包括:KNN算法、朴素贝叶斯、决策树、支持向量机、线性回归、K-means算法、人工神经网络、卷积网络深度学习以及基于Python数据分析进行职业规划。本书作为大数据技术与人工智能领域的入门教材,在内容上涵盖了机器学习经典算法的基础知识和应用实例,采用Python作为编程语言,强调基本算法的应用理解,内容由浅入深。各部分内容均配有相应的任务,注重实践应用,便于读者学习和掌握。本书可作为各类职业院校大数据技术、云计算技术应用、人工智能技术应用等相关专业的教学用书,也可作为相关专业领域工程技术人员的参考用书。本书配有电子课件、源代码、微课视频(扫描二维码观看)等课程资源,选用本书作为授课教材的教师可以登录机械工业出版社教育服务网(www.cmpedu.com)注册后免费下载,也可联系编辑(010-88379807)咨询。
-
大数据应用技术基础周宪章,黄文胜中等职业教育经过多年的改革发展基本上形成了“以学生为中心、能力为本位”的职业教育理念,但要真正做到全面实施能力本位课堂教学模式,让学生在“做中学,学中做”,那么教材是基础,教师是根本,教法是途径。教材尤其是中等职业教育教材不应仅是知识的简单静态载体,必须是有教育思想、有灵魂的活教材。本书在开发设计时,把“行动导向”教学法的 理念融入教材中,基于工作过程导向课程设计思想安排教材内容,实现了工作内容与学习内容的有机统一,对于每个学习项目按照“行动导向”教学法的六个环节:资讯、计划、决策、实施、检查、评价组织教学内容,教材体例结构新颖,内容呈现形式简明、准确、层次分明、逻辑性强,为教师和学习者提供一种有别于传统教材的全新教法和学习体验,能有效促进教师改进教法,提升教学能力水平,促使学习者“做中学,学中做”,提高学习效益和学习获得感。