人工智能
-
MATLAB机器学习[意] 朱塞佩·恰布罗(Giuseppe Ciaburro) 著,张雅仁,李洋 译MATLAB为机器学习领域提供了必要的工具。用户可以借助MATLAB环境提供的强大交互式图形界面,非常轻松地解决机器学习问题。本书在介绍每个主题前,会简要概述其理论基础,然后辅以实际案例进行阐释。通过阅读本书,读者能够应用机器学习方法,并能充分利用MATLAB的功能解决实际问题。《MATLAB机器学习》前3章主要介绍MATLAB机器学习的基础知识、使用MATLAB导入数据和组织数据的方法以及从数据到知识发掘的方法,中间3章主要介绍回归分析、分类分析以及无监督学习,最后3章介绍人工神经网络、降维变换的方法以及机器学习实战的相关知识。本书可供数据分析员、数据科学家以及任何希望学习机器学习算法以及构建数据处理、预测应用的读者阅读。 -
量子计算机简史[日] 西森秀稔,大关真之 著,姜婧 译谷歌和NASA联手宣布“快1亿倍”的计算机是怎样诞生、如何运行的? 量子计算机有望推动人工智能等多个领域的飞跃性发展,为何却会遭到质疑? 追求“量子霸权”的角逐中,谁迈出了ling跑的第一步,谁又能从哪些方面弯道超车? 加拿大D-Wave公司研发的量子计算机虽然从问世之初便饱受质疑,但仍旧赢得了洛克希德·马丁公司、谷歌及NASA等客户,并在全球范围内引发了量子计算机研发的更大热潮。D-Wave量子计算机虽然诞生在北美,但其采用的量子退火理论和基本技术都是由日本科学家率先提出的。 西森秀稔教授正是量子退火理论的提出者之一,他与本书另一位作者大关真之副教授一直在量子计算领域的第一线从事研究,他们用尽可能简单而精准的语言,为普通读者拨开纷繁的迷雾,介绍关于量子计算机最核心的真实信息。 -
TensorFlow深度学习从入门到进阶张德丰《TensorFlow深度学习从入门到进阶》以TensorFlow为主线进行讲解,书中每章节都以理论引出,以TensorFlow应用巩固结束,理论与实践相结合,让读者快速掌握TensorFlow机器学习。《TensorFlow深度学习从入门到进阶》共11章,主要包括TensorFlow与深度网络、TensorFlow编程基础、TensorFlow编程进阶、线性回归、逻辑回归、聚类分析、神经网络算法、卷积神经网络、循环神经网络、其他网络、机器学习综合实战等内容。《TensorFlow深度学习从入门到进阶》适合TensorFlow初学者阅读,也适合研究TensorFlow的广大科研人员、学者、工程技术人员学习参考。 -
知识图谱与深度学习刘知远,韩旭,孙茂松知识图谱旨在将人类知识组织成结构化知识系统,是人工智能实现真正意义的理解、记忆与推理的重要基础。知识图谱作为典型的符号表示系统,如何有效用于机器学习算法,面临着知识表示、知识获取和计算推理等方面的诸多挑战。近年来,以神经网络为代表的深度学习技术引发了人工智能的新一轮浪潮。 本书介绍了作者团队在知识图谱与深度学习方面的研究成果,展现了数据驱动的深度学习与符号表示的知识图谱之间相互补充和促进的技术趋势。本书内容对于人工智能基础研究具有一定的参考意义,既适合专业人士了解知识图谱、深度学习和人工智能的前沿热点,也适合对人工智能感兴趣的本科生和研究生作为学习读物。 -
从机器学习到无人驾驶宋哲贤《从机器学习到无人驾驶》以机器学习为出发点,使用简易的代码讲解机器学习的核心算法(深度神经网络和强化学习),在算法学习的基础上使用增量方法开发包含定位、预测、路径规划和业务控制等一系列自动驾驶模块。该书代码实例涉及自动驾驶的普遍业务方法,可使读者理解自动驾驶背后的设计思想和原理,快速入门自动驾驶的算法和开发流程。 《从机器学习到无人驾驶》示例代码丰富,涵盖实际开发中所有的重要知识点,适合无人驾驶从业者、想要学习机器学习和无人驾驶的开发人员阅读,也可用作培训机构和高校相关专业的教学参考书。 -
Python聊天机器人开发[印] Sumit Raj(苏米特・拉杰) 著,黄光远 译本书是使用 Python 动手搭建聊天机器人的入门书籍。全书共 5 章,包含聊天机器人的发展历史、自然语言处理的相关知识,以及多种搭建、部署聊天机器人的基本方法。此外,作者还提供了丰富的源码和细致的教程,极具实操性。无论你是具有一定 Python 编程基础的技术人员,还是想更多了解聊天机器人相关知识的产品经理、项目管理人员,都能从本书学习到搭建聊天机器人的相关内容,并能在本书的指导下实际完成聊天机器人的搭建和对外发布。 -
机器学习基础教程姚舜才 著本书介绍了机器学习的基本算法、历史发展、应用前景及相关问题。内容包括:机器学习所涉及的必要的数学知识,机器学习的基本模式和任务,神经网络的基本理论及算法结构,分类与聚类学习算法,数据维度归约的基本方法,图理论及方法以及当前比较流行的机器学习理论和算法。本书在加深学生对经典机器学习方法理解的基础上适当扩展其视野,以培养和提高其解决实际问题的能力。 本书可作为高等学校人工智能相关专业的教材,也适合该领域的工程技术人员参考使用。 -
推荐系统刘宏志 著本书除了介绍推荐系统的一般框架、典型应用和评测方法之外,还主要介绍各种典型推荐算法的思想、原理、算法设计和应用场景,包括针对“千人千面”的个性化推荐和针对“千人万面”的情境化推荐。此外,本书还包含一些和推荐系统相关的专题内容,如针对排序问题的排序学习和针对信息融合的异质信息网络模型。本书可作为计算机科学与技术、软件工程、数据科学与大数据技术、人工智能等专业的高年级本科生和研究生的相关课程教材,也可作为从事推荐系统、搜索引擎、数据挖掘等研发工作相关人员的参考书。 -
机器学习简明教程汪荣贵 著本书内容主要包括机器学习的基本知识、基本学习方法、集成学习方法、深度学习方法和深度强化学习方法等内容,将机器学习的经典内容与深度学习等前沿内容有机地结合在一起,形成一套相对完整的知识体系,并在每个章节穿插相应的应用实例,使得广大读者不但能够较好地掌握机器学习基本理论,而且能够比较系统地掌握其应用技术,为今后的工作和进一步学习打下扎实的理论与应用基础。 -
人工智能应用技术基础刘鹏 著本书内容包含人工智能新技术、大数据、机器学习、深度学习、知识图谱、AI图像技术、自然语言处理、智慧物联、数字工厂、智能机器人、智慧城市。本书案例丰富、结构清晰、通俗易懂,是一本比较全面、系统地介绍人工智能基础技术的书籍。 本书可作为应用型本科、高职院校的人工智能应用技术通识课教材,也可作为人工智能爱好者、从业者的辅助读物。
