人工智能
-
用 Python 编程和实践!深度学习教科书[日] 石川聪彦 著,陈欢 译《用Python编程和实践!深度学习教科书》是一本专门针对有一定编程经验,但没有Python和机器学习相关经验的读者编写的参考书籍,目标是让读者能够独立编写出机器学习相关的应用程序。书中首先介绍了机器学习和Python语言的基础知识,然后对NumPy、Pandas、matplotlib等在Python中使用频率较高的软件库进行讲解;对数据可视化、lambda和map等Python语法、基于DataFrame的数据整理、OpenCV的运用和图像数据的数据预处理进行讲解;最后对监督学习、超参数和调校等基础的机器学习及深度学习技术进行实践与挑战,并最终使读者达到能够运用深度学习技术之一的CNN来实现图像识别任务项目的技术水平。本书特点是用编程实践的方法学习,特别适合深度学习初学者及参与人工智能(AI)相关开发的程序员、研究人员和理工科学生。
-
决策智能[美] Lorien Pratt(罗莉安・普拉特) 著,禾摇 译最发达的科技为何不能解决最复杂最重要的问题?缺失的实际上是决策智能。这本书是关于如何以一种新的方式思考决策,与古老的思维模式相联系,并由无限的新信息来源和合作提供新信息。这个领域被称为决策智能(DI)。本书提供了一种新的人工智能:决策智能,一种链接起数据、行为和结果的新智能,也是感知智能和认知智能的下一个阶段。本书讨论了决策智能的核心问题:今天采取行动,做出决策,未来会出来什么结果?也提供了决策智能的核心――因果决策图,是思想的DNA。因果决策模型综合人工智能、行为经济学、因果分析等,形成一种任何人都能使用的决策方法。作者提供如何建立决策模型的方法,决策智能的应用和力量,决策智能为未来提供的技术和智力支持。同时,通过制定决策的思维过程,驱除机器和人决策的迷雾,用可视化图表展现出来,为复杂环境提供了技术的切入点。本书将当前最敏锐的思维从决策智能、人工智能、因果分析和行为经济学整合到一种任何人都可以使用的决策方法中。决策智能是人工智能的新阶段。用真实案例解析决策智能如何将人和计算机等链接,帮助我们解决复杂问题。
-
语音识别基本法汤志远 等 著语音是新一代人机交互的方式,语音识别是实现这一方式的关键环节,也是实现人工智能的基本步骤之一。本书结合当下使用广泛的Kaldi工具,对语音识别的基本概念和流程进行了详细的讲解,包括GMM-HMM、DNN-HMM、端到端等常用结构,并探讨了语音识别在实际应用中的问题,包括说话人自适应、噪声对抗与环境鲁棒性、小语种语音识别、关键词识别与嵌入式应用等方面,也对语音技术的相关前沿课题进行了介绍,包括说话人识别、语种识别、情绪识别、语音合成等方向。本书的写作以让读者快速、直观地理解概念为目标,只展示最基本的数学公式,同时本书注重理解与实践相结合,在对语音技术各个概念的讲解中都展示了相应的Kaldi语音处理命令,以便让读者进一步融会贯通。本书适用于语音识别及相关技术的初学者、在校学生,以及基于Kaldi进行产品研发的同仁,也可以作为语音从业者的参考书目。
-
机器学习导论王东 著本书分类《机器学习导论》面向机器学习领域的主要模型和算法,重点阐述不同方法背后的基本假设以及它们之间的相关性,帮助读者建立机器学习的基础理论功底,为从事该领域的相关工作打下基础。具体内容包括机器学习研究的总体思路、发展历史与关键问题,线性模型,神经网络及深度学习,核方法,图模型,无监督学习,非参数模型,演化学习,强化学习,数值优化方法等。 本书可作为高等学校相关课程的教材,也可作为研究生及对机器学习感兴趣的科技、工程技术人员的参考用书。本书封面贴有清华大学出版社防伪标签,无标签者不得销售。
-
不确定多属性群决策方法及应用李艳玲 等 著本书围绕不确定多属性群决策问题展开研究,重点对将群决策方法移植到灰色关联、D-S证据理论、层次分析法等方法中涉及的不确定信息处理、专家权重调整、专家个体偏好信息的集结,以及集结效果的检验或方法结果的合理性对比分析、基于混合信息的多属性群决策等问题进行研究。在介绍国内外该方向研究进展的基础上,重点介绍作者在基于灰色关联和D-S证据理论的多属性群决策方法、基于群体层次分析法的指标权重求解方法、基于区间直觉模糊数和混合信息的不确定多属性群决策方法,以及不确定多属性群决策在武器装备论证决策中的应用等方面的研究成果。
-
Swift人工智能实战[澳] 马尔斯·吉尔达德(Mars Geldard) 著,邓奕朱 雪晴译 译本书从实战角度出发,为所有程序员和开发人员提供了使用Swift进行AI和机器学习开发的一站式服务。全书分为三部分:di一部分介绍机器学习和人工智能背后的基础知识;第二部分讨论许多有趣的主题,包括计算机视觉、音频、运动和语言;第三部分详细研究为第二部分的应用程序提供支持的技术。
-
GAN实战[英] 雅各布·朗格尔(Jakub,Langr)[美]弗拉基米尔·博克 著,罗家佳 译本书主要介绍构建和训练生成对抗网络(GAN)的方法。全书共12 章,先介绍生成模型以及GAN 的工作原理,并概述它们的潜在用途,然后探索GAN 的基础结构(生成器和鉴别器),引导读者搭建一个简单的对抗系统。本书给出了大量的示例,教读者学习针对不同的场景训练不同的GAN,进而完成生成高分辨率图像、实现图像到图像的转换、生成对抗样本以及目标数据等任务,让所构建的系统变得智能、有效和快速。
-
机器学习公式详解谢文睿,秦州 著周志华老师的《机器学习》(俗称“西瓜书”)是机器学习领域的经典入门教材之一。本书(俗称“南瓜书”)基于Datawhale 成员自学“西瓜书”时记下的笔记编著而成,旨在对“西瓜书”中重难点公式加以解析,以及对部分公式补充具体的推导细节。 全书共16 章,与“西瓜书”章节、公式对应,每个公式的推导和解析都以本科数学基础的视角进行讲解,希望能够帮助读者达到“理工科数学基础扎实点的大二下学期学生”水平。每章都附有相关阅读材料,以便有兴趣的读者进一步钻研探索。 本书思路清晰,视角独特,结构合理,可作为高等院校计算机及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
-
人工智能朱宗卫 著目前我国人工智能教育与科研领域所使用的基础软硬件多为国外开发研制,其中Nvidia GPU占据了大部分市场。在此背景下,以寒武纪为代表的高科技企业成功开发并流片了国产智能处理器,打破了国外厂商在此领域的垄断地位,但是处理器的普及在于生态的建立与人才的培养,而高等院校是科学研究与人才培养的主阵地,在高等院校开设国产智能处理器相关课程,既有利于推进国产智能处理器的生态建设,也有利于国家人工智能领域人才的培养。为建设基于寒武纪国产智能处理器的人工智能教育科研平台,推动寒武纪在科学与工程研究项目中的广泛使用,培养掌握寒武纪平台的高水平人才,建设寒武纪应用生态,精心组织编写了本教材,并提供相应的实验教学套件。
-
联邦学习技术及实战彭南博,王虎 等 著本书针对产业界在智能化过程中普遍面临的数据不足问题,详细地阐述了联邦学习如何帮助企业引入更多数据、提升机器学习模型效果。互联网数据一般分布在不同的位置,受隐私保护法规限制不能共享,形成了“数据孤岛”。联邦学习像“数据孤岛”之间的特殊桥梁,通过传输变换后的临时变量,既能实现模型效果提升,又能确保隐私信息的安全。 本书介绍了联邦学习技术的原理和实战经验,主要内容包括隐私保护、机器学习等基础知识,联邦求交、联邦特征工程算法,三种常见的联邦形式,以及工程架构、产业案例、数据资产定价等。