人工智能
-
AI源码解读李永华 著《AI源码解读:机器学习案例(Python版)(人工智能科学与技术丛书)》以人工智能发展为时代背景,通过20个应用机器学习模型和算法的实际案例,为工程技术人员提供较为详细的实战方案,以便深入学习。在编排方式上,全书侧重对创新项目的过程进行介绍,分别从整体设计、系统流程和实现模块等角度论述数据处理、模型训练和模型应用,并剖析模块的功能、使用和程序代码。为便于读者高效学习、快速掌握人工智能开发方法,该书配套提供项目设计工程文档、程序代码、实现过程中出现的问题及解决方法等资源,可供读者举一反三、二次开发。《AI源码解读:机器学习案例(Python版)(人工智能科学与技术丛书)》结合系统设计、代码实现以及运行结果展示进行讲解,语言简洁,深入浅出,通俗易懂,不仅适合作为对Python编程感兴趣的科研人员、人工智能爱好者及从事智能应用创新开发专业人员的参考教材,也可作为高等院校相关专业的参考书。 -
深度强化学习落地指南魏宁 著本书从工业界一线算法工作者的视角,对深度强化学习落地实践中的工程经验和相关方法论做出了深度思考和系统归纳。本书跳出了原理介绍加应用案例的传统叙述模式,转而在横向上对深度强化学习落地过程中的核心环节进行了完整复盘。主要内容包括需求分析和算法选择的方法,动作空间、状态空间和回报函数设计的理念,训练调试和性能冲刺的技巧等。本书既是前人智慧与作者个人经验的交叉印证和精心整合,又构成了从理论到实践再到统一方法论的认知闭环,与市面上侧重于算法原理和代码实现的强化学习书籍形成了完美互补。 -
机器意识[印] 阿卡普拉沃·包米克(Arkapravo Bhaumik) 著,王兆天 李晔卓 等译本书涵盖许多无论是在理论还是在实践中都非常有趣的话题。书中介绍了包括控制范式、导航、软件、多机器人系统、群体机器人、社会角色中的机器人以及机器人中的人工意识。阐述了几个宽泛的主题,如人工智能理论与应用、拟人化、化身与情境、将心理学和动物行为理论扩展到机器人的理论以及未来的人工智能的新定义。 -
深度学习架构与实践鲁远耀 著本书讲述了深度学习架构与实践,共分为两个部分,第1部分(即第1~6章)为基础理论,主要对深度学习的理论知识进行了详细的讲解;第2部分(即第7~12章)为应用实践,以具体的实际案例为场景,通过理论和实践相结合的讲解方式使读者能够对深度学习技术有更好的理解。本书可以为读者提供一条轻松、快速入门深度学习的路径,有侧重地阐明深度学习的经典知识和核心要点,从架构和实践两个方面,让读者对深度学习的系统架构和若干领域的应用实践有清晰和深入的掌握。本书适合计算机软件相关专业的高年级本科生或研究生,以及所有想要学习深度学习或从事计算机视觉算法开发的读者阅读。 -
智能文娱刘婷婷 著本书将理论介绍与经典案例相结合,对文娱行业的现状、人工智能在文娱行业的应用和智能文娱的未来发展进行全面、深入、系统的解读与预测。本书选取的案例都极具代表性,涵盖文娱行业的诸多领域,如影视、游戏、文学等,涉及众多科技巨头,如阿里巴巴、百度、腾讯、今日头条等。笔者在介绍案例时,并非只是简单描述,而是通过深入分析来抛砖引玉,向读者揭示文娱行业的发展方向,帮助文娱行业的从业者学习、了解人工智能带来的改变。 -
机器学习中的加速一阶优化算法林宙辰,李欢,方聪 著机器学习是关于从数据中建立预测或描述模型,以提升机器解决问题能力的学科。在建立模型后,需要采用适当的优化算法来求解模型的参数,因此优化算法是机器学习的重要组成部分。但是传统的优化算法并不完全适用于机器学习,因为通常来说机器学习模型的参数维度很高或涉及的样本数巨大,这使得一阶优化算法在机器学习中占据主流地位。 本书概述了机器学习中加速一阶优化算法的新进展。书中全面介绍了各种情形下的加速一阶优化算法,包括确定性和随机性的算法、同步和异步的算法,以求解带约束的问题和无约束的问题、凸问题和非凸问题,对算法思想进行了深入的解读,并对其收敛速度提供了详细的证明。 本书面向机器学习和优化领域的研究人员,包括人工智能、信号处理及应用数学特别是计算数学专业高年级本科生、研究生,以及从事人工智能、信号处理领域产品研发的工程师。 -
基于BERT模型的自然语言处理实战李金洪 著本书介绍如何在PyTorch框架中使用BERT模型完成自然语言处理(NLP)任务。 BERT模型是当今处理自然语言任务效果最好的模型。掌握了该模型,就相当于掌握了当今主流的NLP技术。本书共3篇。 -第1篇介绍了神经网络的基础知识、NLP的基础知识,以及编程环境的搭建; -第2篇介绍了PyTorch编程基础,以及BERT模型的原理、应用和可解释性; -第3篇是BERT模型实战,帮助读者开阔思路、增长见识,使读者能够真正驾驭BERT模型,活学活用,完成自然语言处理任务。通过本书,读者可以熟练地在PyTorch框架中开发并训练神经网络模型,快速地使用BERT模型完成各种主流的自然语言处理任务,独立地设计并训练出针对特定需求的BERT模型,轻松地将BERT模型封装成Web服务部署到云端。本书结构清晰、案例丰富、通俗易懂、实用性强,适合对自然语言处理、BERT模型感兴趣的读者作为自学教程。另外,本书也适合社会培训学校作为培训教材,还适合计算机相关专业作为教学参考书。 -
AI源码解读李永华,曲宗峰,李红伟《AI源码解读:循环神经网络(RNN)深度学习案例(Python版)》以人工智能发展为时代背景,通过20个实际案例应用机器学习模型和算法,为工程技术人员提供较为详细的实战方案,以便深度学习。在编排方式上,全书侧重对创新项目的过程进行介绍。分别从整体设计、系统流程、实现模块等角度论述数据处理、模型训练及模型应用,并剖析模块的功能、使用和程序代码。为便于读者高效学习,快速掌握人工智能开发方法,本书配套提供项目设计工程文档、程序代码、实现过程中出现的问题并给予解决方法,可供读者举一反三,二次开发。本书从系统设计、代码实现以及运行结果展示相结合,语言简洁,深入浅出,通俗易懂,不仅适合对Python编程有兴趣的爱好者,而且可作为高等院校参考教材,还可作为从事智能应用创新开发专业人员的技术用书。 -
Python机器学习算法与实战孙玉林,余本国本书基于Python语言,结合实际的数据集,介绍如何使用机器学习与深度学习算法,对数据进行实战分析。本书在内容上循序渐进,先介绍了Python的基础内容,以及如何利用Python中的第三方库对数据进行预处理和探索可视化的相关操作,然后结合实际数据集,分章节介绍了机器学习与深度学习的相关算法应用。本书为读者提供了源程序和使用的数据集,方便读者在阅读时同步运行程序,在增强学习效果的同时为读者节省了编写程序的时间。源程序使用Notebook的形式进行组织,每个小节注释清晰,讲解透彻。同时为程序配备了相应的视频讲解,辅助读者对程序能很好地理解和消化。本书在简明扼要地介绍算法原理的同时,更加注重实战应用和对结果的解读。 -
深入浅出AI算法吕磊本书从理论到实践,循序渐进地介绍人工智能算法的基础知识,帮助读者敲开人工智能算法之门。本书共有8 章,分别为算法入门、算法之内力、算法之招式、算法之****、算法工程的组成部分、算法工程实战、进阶学习、思考与展望。本书主要讲解算法的历史背景与基本概念、与算法相关的数学基础知识、信息学算法与数据结构的概念与知识点、业界常用的几类机器学习算法模型;本书还会介绍算法工程比较完整的组成部分,以及一个典型的算法工程项目,手把手带领读者体验算法的魅力;此外,本书会介绍人工智能算法的三大研究方向,帮读者迈向进阶学习之路。本书适合从事人工智能应用实践的科研人员和工程技术人员阅读,也适合高等院校计算机科学与技术、人工智能、大数据等相关专业的本科生和研究生阅读。
