人工智能
-
机器学习在算法交易中的应用(美)斯蒂芬·詹森人工智能时代,数字数据的爆炸式增长推动了人们对使用机器学习(ML)的交易策略相关知识的需求。《机器学习在算法交易中的应用(第2版)》就以Python为基本工具,从全局、战略的视角介绍了相关的概念,以及机器学习在交易策略设计和执行中的价值及实践运用。全书分4部分,其中第1部分主要介绍基于机器学习的交易策略的基础知识,该部分内容围绕机器学习算法以及交易策略相关的数据展开,概述了如何有效捕获数据信号内容、如何准确提取特征,以及如何基于这些数据优化算法评估投资组合。第2部分重点阐述了在端到端工作流环境中,一些基本的监督学习、无监督学习是如何为交易策略的制定提供帮助的。第3部分是自然语言处理,这部分引入了无监督学习算法,力求从文本数据这种最关键的另类数据中高质量地提取信号。第4部分通过TensorFlow和PyTorch,重点介绍深度学习和强化学习在交易策略设计中的应用。 《机器学习在算法交易中的应用(第2版)》通过大量示例,详细介绍了如何使用不同机器学习算法设计交易策略,并通过大量的数学及统计知识,帮助读者更好地理解算法调优过程及整个计算过程。特别适合想获得用于交易的机器学习算法相关知识或想设计交易策略的数据分析师、数据科学家、Python开发人员、投资分析师或投资组合经理参考学习。
-
深度匹配学习徐君,何向南,李航本书从语义匹配的角度解决搜索引擎和推荐系统的关键痛点,为构建解决语义匹配问题的深度学习模型提供了通用框架。第1章概述搜索和推荐中的语义匹配问题,以及近年来的研究进展。第2章介绍传统匹配模型,包括潜在空间模型。第3章介绍深度学习技术在构建匹配模型时的应用。第4章和第5章分别介绍用于搜索和推荐的深度匹配模型,并将当前的深度学习解决方案分为两类:表示学习方法和匹配函数学习方法。第6章对全书内容做了总结,并为读者指明进一步学习的方向。 本书适合对深度学习感兴趣的各类读者,包括相关专业的本科生、研究生、博士生,以及从事信息检索、搜索引擎、推荐系统、计算广告相关工作的软件工程师。
-
人工智能伦理与治理未来论坛 著当前,有很多关于人工智能(AI),并和人类生产、生活关系紧密的议题被广泛讨论,包括“如何避免大数据时代个人隐私形同虚设”“代码是否具有道德”等。这些现实议题背后,是两个根本问题:何为“AI伦理”?何为“AI治理”? 本书汇聚众多专家的观点,对这两个根本问题进行了深入探讨,涉及人工智能、计算机、法律、社会学等多个领域,覆盖社会和个人、生产和生活的诸多方面。 本书是根据未来论坛“AI伦理与治理”系列研讨会的成果总结、整理而来,分为AI向善的理论与实践、AI的公平性、AI与风险治理、AI决策的可靠性和可解释性、用户数据隐私、包容性的AI这6个专题方向。每个专题方向均汇集了各领域中一线专家经充分思辨讨论后形成的观点。 本书适合人工智能领域学者、工程师、管理者、创业人员和相关专业学生,法律、社会学等领域的专业人士,以及政府相关部门人员阅读。
-
语言智能研究周建设语言智能正在快速发展。周建设教授主编的《语言智能研究(第1卷)》,不仅用大量材料报告了这一领域快速发展的现况,还尽量呈现相关方面的发展趋势。细读此书,可明现状,可测未来。“消极性”读者,只是被动地获取书中知识,而“积极性”读者,通过阅读能够创造新知,比如对语言智能有更深入理解,比如在本专业、本岗位积极利用语言智能成果,甚至是帮助人工智能的发展。
-
弱监督学习实用指南卓伟雄(Wee Hyong Tok)等如今绝大多数数据科学家和数据工程师基于高质量的标记数据集来训练学习模型。但是,人工构建训练集既耗时又昂贵,以至于很多公司的机器学习项目无法完成。有一种更为实用的方法。在本书中,Wee Hyong Tok、Amit Bahree和Senja Filipi向你展示了如何使用弱监督学习模型创建产品。你将学习如何通过使用Snorkel(斯坦福大学人工智能实验室的一个衍生产品),在弱标记数据集上构建自然语言处理和计算机视觉项目。由于很多公司研究的机器学习项目从未走出他们的实验室,所以本书还提供了如何在真实案例中使用你所构建的深度学习模型的指南。
-
深度学习(美)安德鲁·格拉斯纳本书从基本概念和理论入手,通过近千张图和简单的例子由浅入深地讲解深度学习的相关知识,且不涉及复杂的数学内容。 本书分为上下两册。上册着重介绍深度学习的基础知识,旨在帮助读者建立扎实的知识储备,主要介绍随机性与基础统计学、训练与测试、过拟合与欠拟合、神经元、学习与推理、数据准备、分类器、集成算法、前馈网络、激活函数、反向传播等内容。下册介绍机器学习的 scikit-learn 库和深度学习的 Keras 库(这两种库均基于 Python 语言),以及卷积神经网络、循环神经网络、自编码器、强化学习、生成对抗网络等内容,还介绍了一些创造性应用,并给出了一些典型的数据集,以帮助读者更好地了解学习。 本书适合想要了解和使用深度学习的人阅读,也可作为深度学习教学培训领域的入门级参考用书。
-
量子张量网络机器学习赖红,刘紫豪,陶元红,杨艳本书力求用兼具浅白和学术的语言介绍量子张量网络中的抽象概念,包括量子、叠加、纠缠、测量、量子概率、三种著名的量子算法——Shor算法、Grover算法和HHL算法、张量、张量分解、四种典型张量网络态、TEBD算法、密度矩阵重整化群等,进而揭开这些概念自身本质和概念之间关系的面纱,内容涉及量子力学基本概念、三种著名的量子算法、张量基础、张量网络与量子多体物理系统、量子多体系统的张量网络态算法和基于张量网络的量子机器学习。本书在内容编排上主要是通过数学方式对量子张量网络机器学习进行阐述,而不会在物理学上对它们进行过多的精确解释,为张量网络机器学习提供捷径。
-
人工智能语音测试原理与实践张伟本书主要介绍关于人工智能语音测试的各方面知识点和实战技术。全书共分为9章,第1章和第2章详细介绍人工智能语音测试各种知识点和人工智能语音交互原理;第3章和第4章介绍人工智能语音产品需求和评价指标及其相对应的验收标准;第5章介绍如何准备语音数据,包括准备方案和具体方法;第6~9章介绍人工智能语音测试涉及的4大模块,即黑盒测试、自动化测试、算法测试、性能测试。本书从理论概念到测试实践,从手工测试到自动化测试,内容翔实且丰富,其中的项目方案、范例和实战代码都是经过长时间验证的,可直接用于实际环境。 本书适合初中高级软件测试工程师,测试经理/总监、开发工程师以及人工智能语音测试爱好者阅读,也可以作为培训机构和大专院校的教学用书。
-
人工智能时代的治道变革陈鹏本书在对人工智能技术的内涵、构成和各国对人工智能采取的监管政策进行梳理的基础上,从哲学、伦理、道德、法律等方面对人工智能技术在应用过程中可能引发的不确定性风险进行分析,提出了相应的变革之道。全书共有十一章,内容包括人工智能技术的内涵与构成,各国对人工智能采取的监管政策,人工智能对就业、医疗、金融和司法等领域的的影响,人工智能主体性的哲学和伦理审视,人工智能人格权确认的道德风险和法律困境以及人工智能时代的公共政策议程,政府治理、算法与权力的博弈,公共安全和全球治理秩序等。
-
ROS机器人编程零基础入门与实践刘伏志,朱有鹏本书是针对ROS(机器人操作系统)初学者的入门教程,内容聚焦于ROS的使用和开发。以Ubuntu操作系统安装和使用为起点,依次介绍了ROS安装、实体/仿真机器人搭建、机器视觉、SLAM建图、导航、多机器人系统等知识,*终引导读者独立完成机器人应用开发的任务。本书中的实验环境和代码基于ROS的Noetic版本。本书为读者提供了全部案例源代码和学习资料,读者可以直接扫描二维码下载。本书适合ROS用户及其编程开发人员使用,也可以作为高等学校或培训学校相关专业的参考教材。