人工智能
-
ChatGPT使用指南苏江本书将从 ChatGPT 的基础知识、应用场景和案例分析等方面展开讲解。例如, 如何使用 ChatGPT 实现自然语言翻译、如何使用 ChatGPT 学习英语,以及修改 代码、生成表格,甚至开发菜品等,所举例的应用场景中包含了大量的实用技巧 和建议,能帮助读者更好地掌握和应用 ChatGPT 工具。 本书共分为 9 章,各章的主题分明,内容循序渐进。第 1 章对 ChatGPT 进 行了一些基础的介绍,然后以对话的形式带你快速入门;第 2 ~ 5 章分别从学习、 工作、娱乐、代码四个角度介绍了不同领域下 ChatGPT 的应用场景,案例十分丰 富;第 6 章详细介绍了 ChatGPT 的实用指令和 AI 角色的个性化设置,带你探索 ChatGPT 的趣味和实用性,推荐读者重点阅读;第 7 章则对最新的 AI 工具进行 了介绍;第 8 章对未来趋势进行了展望,分享了许多有意思的话题;第 9 章则对 ChatGPT 在诸多细分行业中的创新应用进行了众多举例,或许读者能从这些例子 中获得启发。 希望这本书能够帮助读者更好地理解和应用 ChatGPT 技术,让读者在工作和 生活中更加得心应手。 -
Web3与DAO(日)龟井聪彦,铃木雄大,赤泽直树Web3是一场基于加密货币和DAO的革命。作为一种对Web3提供支撑的组织形式——DAO,是一种基于区块链的规则共享及以共同目的为中心的组织。这算是对DAO的一个简单的理解,详情后述。 本书不是纯经济学图书,也不是纯技术类图书,更不是一本用来自学的参考书或者预测未来的科幻小说,而是一本关于Web3和DAO的图书。Web3可以称为互联网的转折点,它的出现使得DAO成为可能。在本书里,我们一边梳理互联网的历史,一边对Web3和DAO的概念与本质进行归纳总结。你能阅读本书,说明你对Web3应该是感兴趣的。这对从事这个行业的作者来说是一件值得感谢和高兴的事情。本书适合想了解元宇宙和Web3的普通读者、想提前布局Web3的资本投资人、Web3相关的研究人员和从业人员阅读参考。 -
深度强化学习实战(美)亚历山大·扎伊,(美)布兰登·布朗 著本书先介绍深度强化学习的基础知识及相关算法,然后给出多个实战项目,以期让读者可以根据环境的直接反馈对智能体加以调整和改进,提升运用深度强化学习技术解决实际问题的能力。 本书涵盖深度Q网络、策略梯度法、演员-评论家算法、进化算法、Dist-DQN、多智能体强化学习、可解释性强化学习等内容。本书给出的实战项目紧跟深度强化学习技术的发展趋势,且所有项目示例以Jupter Notebook样式给出,便于读者修改代码、观察结果并及时获取经验,能够带给读者交互式的学习体验。 本书适合有一定深度学习和机器学习基础并对强化学习感兴趣的读者阅读。 -
人工智能与物联网迈克尔·罗沙克,高慧敏本书采用基于配方的方法完成从数据收集、分析、建模、统计和监视以及部署的基本过程。本书提供来自智能家居,工业物联网和智能设备的真实数据集来训练和评估简单到复杂的模型,并使用经过训练的模型进行预测。本书还介绍了在实施机器学习和深度学习以及其他AI技术(例如自然语言处理、计算机视觉和用于构建智能IoT系统的强化学习)时面临的主要挑战。通过本书读者可以学习如何打包和部署端到端AI应用程序,以及如何将最佳实践解决方案应用于常见的IoT问题。 -
新一代人工智能芦碧波,张建春,王春阳,苏柏顺本书是人工智能和机器学习领域专家多年实践的结晶。它深入浅出地讲解了无代码人工智能开发平台实践,可以激发读者对人工智能的兴趣、学习人工智能知识、明确人工智能要素、掌握人工智能应用流程,并在学习和工作中不断拓展人工智能的应用领域,探索新的人工智能落地应用场景。本书首先介绍了人工智能和无代码人工智能平台EasyDL的基本用法,涉及图像智能分析、文本智能分析、语音智能分析、EasyDL OCR等;然后,重点阐释了人工智能模型调用、人工智能模型部署方面的内容;最后,分析人工智能在各个领域的应用案例并介绍相关的学科竞赛。 本书不仅可以作为高等院校各专业的人工智能通识教育教辅,而且可以作为计算机类、人工智能类专业低年级本科学生的入门教辅。此外,本书也可以作为人工智能比赛参赛人员及对人工智能感兴趣人员的参考书。 -
机器学习入门与实战冷雨泉,高庆,闫丹琪本书主要介绍经典的机器学习算法的原理和改进,以及Python的实例实现。本书的内容可以分成三部分: 第一部分是机器学习概念篇(第1章),充分介绍机器学习的相关概念,并且对机器学习的各种算法进行分类,以便读者对机器学习的知识框架有整体的了解,从而在后续的学习中更容易接受机器学习涉及的各类算法; 第二部分是Python机器学习基础篇(第2章和第3章),简单介绍Python的基本使用方法、机器学习库scikitlearn和人工智能工具集OpenAI Gym; 第三部分是机器学习算法与Python实践篇(第4~19章),对监督学习、无/非监督学习、强化学习三大类常用算法逐一讲解,包括机器学习算法的原理、算法的优缺点、算法的实例解释以及Python的实践应用。 本书适合对人工智能、机器学习感兴趣的读者,希望用机器学习完成设计的计算机或电子信息专业的学生,准备开设机器学习、深度学习实践课的授课老师,学习过C语言,且希望进一步提高编程水平的开发者,刚从事机器学习、语音、机器视觉、智能机器人研发的算法工程师阅读。 -
深度学习于子叶本书以系统性地介绍深度学习理论和相关技术应用为目标,对框架实现及多种深度学习模型进行了详细讲解,并且在介绍计算机图形学(CV)和自然语言处理(NLP)任务之外,还会对科学研究、城市监测等方面的范例应用进行讲解。本书知识全面、实用,共10章,内容包括深度学习数学基础,深度学习基础模型(全连接网络、卷积神经网络、循环神经网络和Transformer等)和实现,多场景多领域最佳实践,模型优化、加速与部署等。本书配套有完整的案例源码,获取方式见封底。本书适合有数据分析需求的技术人员、科研人员,以及互联网数据分析人员阅读,还可以作为深度学习培训班及相关专业研究生的教学参考用书。 -
MLOps权威指南(美)诺亚·吉夫特(Noah Gift)本书前几章涵盖了DevOps和MLOps的理论和实践,然后介绍了如何设置持续集成和持续交付,接着介绍Kaizen,即对所有事物进行持续改进的想法。与云计算相关的MLOps分为三章,涵盖AWS、Azure 和GCP(谷歌云平台)。之后介绍了机器学习互操作性、构建MLOps命令行工具和微服务。这些主题包括许多具有积极吸引力的尖端新兴技术。结尾介绍了一些真实案例研究,以及执行MLOps时面临的挑战。 -
深度学习与计算机视觉谢文伟,印杰《深度学习与计算机视觉:核心算法与应用》理论结合实践,详细介绍机器学习与深度学习常用算法和模型及其在计算机视觉领域的典型应用。对于初学者而言,本书从零开始系统地介绍建模的流程和方法,可以带领他们快速上手;对于有一定基础的读者而言,《深度学习与计算机视觉:核心算法与应用》介绍多种算法和模型的原理,可以帮助他们深入理解并进行实践。 《深度学习与计算机视觉:核心算法与应用》共10章,分为3篇,每篇均从基本概念、模型与算法原理、代码实现三个方面讲解。第1篇“机器学习原理”,围绕机器学习流程,重点介绍特征处理、模型训练和模型评估等相关内容,包括数据集的划分和使用、数据探索和预处理、模型原理分析和选择、模型评估和应用等。第2篇“计算机视觉基础”,介绍计算机视觉的基本概念和处理流程,以及OpenCV的使用和图像特征提取等相关内容。第3篇“深度学习模型与计算机视觉应用”,首先介绍前馈神经网络和循环神经网络的结构,然后介绍深度学习的多种经典算法和14种常见模型,最后结合实例介绍图像分类、目标检测、语义分割、实例分割和目标追踪5类常见的计算机视觉应用。 《深度学习与计算机视觉:核心算法与应用》内容翔实,实例丰富,适合人工智能初学者尤其是计算机视觉初学者阅读,也适合有一定基础的机器学习、深度学习和计算机视觉从业人员阅读,另外还适合作为高等院校人工智能相关专业的教材。 -
机器学习算法入门马秦靖本书是机器学习领域的入门教材,从理论、抽象和设计三方面阐述了机器学习的理论基础、算法实现和具体应用技巧。全书共12章,包括Python概述,Pythor语言基础,基础数据结构,函数与模块,面向对象程序设计,NuPy数据分析,数据可视化,基础算法分析与实现,机器学习概述,回归分析,分类算法,聚类算法。本书既注重保持理论分析的严谨性,又注重机器学习算法的实用性,同时强调机器学习算法的思想和原理在计算机上的实现。本书可作为高等职业院校人工智能相关专业的入门课程教材或教学参考书,也可以供从事机器学习应用开发的技术人员参考。
