人工智能
-
康复增力型下肢外骨骼机器人智能控制王浩平,韩帅帅,田杨本书以穿戴式下肢外骨骼机器人为研究对象,以康复训练辅助和增力辅助为主要应用目标,对下肢外骨骼机器人研究中的运动学/动力学建模、运动意图识别、康复运动步态规划、外骨骼运动控制方法、康复训练辅助策略和增力辅助策略等进行了系统的研究与介绍,设计了相应智能控制算法并进行了验证。
-
数据挖掘与机器学习穆罕默德·J.扎基,小瓦格纳·梅拉本书详实介绍了数据挖掘与机器学习相关的各种内容,包括数据矩阵、图数据、核方法、项集挖掘、聚类、贝叶斯分类器、决策树、支持向量机、线性回归、逻辑回归、神经网络、深度学习等,介绍其相关概念和基础算法,并在每章的末尾配有相关练习。第二版新增了几个关于回归的章节,包括神经网络和深度学习的内容。
-
人工智能与ChatGPT范煜人们相信人工智能可以为这个时代的技术带来突破,而ChatGPT则使这种希望成为现实。现在,许多人都渴望了解与ChatGPT相关的一切,包括技术的历史和背景,其神奇的功能以及如何使用它。虽然ChatGPT的使用方法很简单,但它具有无限的潜力。如果不去亲身体验,很难体会到它的强大之处。本书尽可能全面地介绍了与ChatGPT相关的内容,特别是许多应用示例,可以给读者带来启发。希望读者通过这本书了解ChatGPT后,在自己的工作中也能充分利用它。本书适合希望了解和使用ChatGPT的人阅读。
-
深度学习技术与应用许桂秋,余洋,周宝玲本书旨在介绍人工智能中深度学习的基础知识,为即将进入深度学习领域进行研究的读者奠定基础。全书共13章,其中,第1~4章为理论部分,第5~13章为应用部分。理论部分介绍了机器学习和深度学习的基本内容,以及TensorFlow开发框架的搭建和使用;应用部分设置了多个项目案例,并介绍了这些案例详细的实现步骤和代码,使读者在练习中熟悉和掌握相关知识的应用方法与技巧。 本书采用项目驱动的编写方式,做到了理论和实践的结合。每个项目案例都提供配套的数据源文件和源代码文件,使读者可以直接感受案例效果。读者也可以在相关案例代码的基础上调整相关参数,得到不一样的结果,以加深理解。 本书适合作为高等院校的人工智能课程教材,也可作为人工智能相关培训的教材。
-
基于人工智能的城市轨道交通短时客流预测张金雷,杨立兴,高自友内容:本书构建了包括城市轨道交通常态与非常态场景下车站级和网络级短时进站流预测、短时OD流预测、短时断面流预测、以轨道交通为骨干的多模式交通短时客流预测、基于计算机视觉的轨道交通站内关键设施处短时客流预测等在内的一整套智能城市轨道交通短时客流预测体系。具体章节内容安排如下:第1章为绪论。第2章为城市轨道交通车站级常态短时进站流预测。第3章为城市轨道交通网络级常态短时进站流预测。第4章为城市轨道交通车站级与网络级非常态短时进站流预测。第5章为城市轨道交通车站级与网络级短时OD流预测。第6章为城市轨道交通网络级短时断面流预测。第7章为以轨道交通为骨干的多模式交通短时客流预测。第8章为基于计算机视觉的城市轨道交通站内短时客流预测。 读着对象:本书主要面向城市轨道交通运营管理部分科研人员,广大从事交通大数据分析、机器学习或深度学习的专业人员,从事高等教育的专任教师,高等院校的在读学生及相关领域的广大科研人员,可作为各高等院校交通运输、交通工程等专业的本科生和研究生教材。 特色:随着大数据、人工智能等技术的兴起,利于人工智能方法进行短时客流预测的研究兴起,然而目前国内鲜有利用人工智能方法针对城市轨道交通进行短时客流预测的专著,本书为当前鲜有的利用人工智能进行城市轨道交通短时客流预测方法的专著,构建了一整套包括城市轨道交通常态与非常态场景下车站级和网络级短时进站流预测、短时OD流预测、短时断面流预测、以轨道交通为骨干的多模式交通短时客流预测、基于计算机视觉的轨道交通站内关键设施处短时客流预测等在内的一整套智能城市轨道交通短时客流预测体系。
-
深度序列模型与自然语言处理阮翀《深度序列模型与自然语言处理:基于TensorFlow2实践》以自然语言和语音信号处理两大应用领域为载体,详细介绍深度学习中的各种常用序列模型。 在讲述理论知识的同时辅以代码实现和讲解,帮助读者深入掌握相关知识技能。 《深度序列模型与自然语言处理:基于TensorFlow2实践》共12章,不仅涵盖了词向量、循环神经网络、卷积神经网络、Transformer 等基础知识,还囊括 了注意力机制、序列到序列问题等高级专题,同时还包含其他书籍中较少涉及的预训练语言模型、生成 对抗网络、强化学习、流模型等前沿内容,以拓宽读者视野。 《深度序列模型与自然语言处理:基于TensorFlow2实践》既适合互联网公司算法工程师等群体阅读,又可以作为本科高年级或研究生级别的自然语言处 理和深度学习课程的参考教材。
-
细说机器学习凌峰 编著《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:第一篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习最重要与高频使用的模型,包括K-Means聚类、K最近邻、回归、决策树、朴素贝叶斯、支持向量机、神经网络等内容。本篇不仅详细讲解各个算法的原理,还提供大量注释详尽的代码示例,使这些算法变得直观易懂。第三篇为拓展应用,包括集成学习、深度学习框架TensorFlow与PyTorch入门、卷积网络、激活函数以及模型微调与项目实战。本篇内容更加前沿与高级,带领读者跨过机器学习的门槛,进行真实项目的实践与部署。 《细说机器学习:从理论到实践》内容丰富、系统且实用,大量相关代码示例贴近实战,能够为读者学习机器学习打下扎实的基础,并真正掌握运用这些知识与算法解决实际问题的技能。适合机器学习入门者、大学生、人工智能从业者,以及各行业技术人员和科研人员使用,也可作为培训机构和大专院校人工智能课程的教学用书。
-
复杂动态环境下非合作目标探测与识别蔡磊本书以非合作目标探测与识别为主线,深入挖掘了复杂动态环境对目标探测与识别的影响因素,围绕复杂动态环境强干扰导致的目标特征畸变与缺失、特征模糊不清等问题,提出了特征畸变与缺失下的非合作目标探测与识别方法、特征模糊下的非合作目标探测与识别方法,构建了小样本强干扰下的非合作目标探测与识别方法。更进一步,把多智能体协同协作机制引入到非合作目标识别与探测领域,分别构建了面向多自主水下航行器围捕的非合作目标探测与识别方法、基于多视角光场重构的非合作目标探测与识别方法。
-
自动驾驶胡波,林青,陈强副本书参照产业界自动驾驶技术研发的基本流程,充分借鉴了产业界在自动驾驶技术领域中的实际研 发经验,以高性能的智能小车和高度仿真的车道沙盘为实验教具和运行环境,深入浅出地讲解自动驾驶技 术的原理与实际应用,为初学者打开一扇通往人工智能世界的大门。本书以帮助初学者如何从无到有地 打造出具备自动驾驶功能的智能小车为主线,内容分为看车(了解自动驾驶)、造车(设计智能小车)、开车 (收集训练数据)、写车(编写自动驾驶模型)、算车(训练和优化自动驾驶模型)、玩车(部署并验证自动驾驶 模型)6章。初学者可以通过边学习理论知识边动手实践的方式,系统学习人工智能的算法理论和应用实 例。本书没有堆砌艰深晦涩的公式推导,力求将枯燥难解的算法原理及模型进行直观的讲解,希望读者在 学习的过程中,了解现实中自动驾驶技术的发展并获得运用人工智能解决自动驾驶难题的乐趣。 本书适合作为高等院校智能科学与技术、人工智能相关专业的教材,也适合作为人工智能研究人员、 开发人员的参考书。
-
细说PyTorch深度学习凌峰,丁麒文《细说PyTorch深度学习:理论、算法、模型与编程实现》由业界专家编撰,采用理论描述加代码实践的思路,详细介绍PyTorch的理论知识及其在深度学习中的应用。全书分为两篇,共16章。第一篇为基础知识,主要介绍PyTorch的基本知识、构建开发环境、卷积网络、经典网络、模型保存和调用、网络可视化、数据加载和预处理、数据增强等内容;第二篇为高级应用,主要介绍数据分类、迁移学习、人脸检测和识别、生成对抗网络、目标检测、ViT等内容。本书内容涵盖PyTorch从入门到深度学习的各个方面,是一本基础应用与案例实操相结合的参考书。 《细说PyTorch深度学习:理论、算法、模型与编程实现》理论兼备实例,深入浅出,适合PyTorch初学者使用,也可以作为理工科高等院校本科生、研究生的教学用书,还可作为相关科研工程技术人员的参考书。