数据库
-
理论与实践张晨 吴菁 周研 著本书系统论述了图数据库的理论知识与行业应用实践。本书分为理论篇和实践篇,共15章。其中,理论篇包括第1~8章,由浅入深地介绍了图数据库的概念和底层技术原理,涵盖主流图数据库的内核原理与架构设计、图查询语言、图算法 、图数据库客户端编程、图数据库服务端编程、图可视化、图数据库选型等内容;实践篇包括第9~15章,介绍了图数据库的行业应用案例,涵盖知识图谱、金融、泛政府、零售、制造业供应链管理、企业资产管理、生命科学等内容,通过这些案例,进一步启发读者深入思考和挖掘潜在的应用场景。针对行业案例,本书免费提供详尽的源代码,以便读者动手实践。 本书适合数据库应用开发人员、数据库管理人员、数据科学家以及负责数据库选型的技术专家阅读,也适合高等院校数据库专业的高年级本科生和研究生参考。 -
数据科学技术苏海波、刘译璟、易显维、苏萌数据科学的关键技术包括数据存储计算、数据治理、结构化数据分析、语音分析、视觉分析、文本分析和知识图谱等方面。本书的重点是详细介绍文本分析和知识图谱方面的技术。文本分析技术主要包括文本预训练模型、多语种文本分析、文本情感分析、文本机器翻译、文本智能纠错、NL2SQL问答以及ChatGPT大语言模型等。知识图谱技术主要包括知识图谱构建和知识图谱问答等。本书将理论介绍和实践相结合,详细阐述各个技术主题的实现路线,并对应用于业界算法大赛中的技术方案和技巧进行源代码解读,帮助读者深入理解技术原理。最后,本书还介绍了文本分析和知识图谱技术在政务、公共安全、应急等多个行业中的智能应用实践案例。《数据科学技术:文本分析和知识图谱》适合具备Python和机器学习技术基础的高等院校学生、文本分析(或者自然语言处理)以及知识图谱领域的算法工程师和研究机构的研究者阅读,也适合数据科学和人工智能领域的研究者作为参考书。 -
大智小技V爱可生开源社区“大智小技”系列图书由爱可生开源社区发起,将每年在社区发布的优质技术内容进行筛选分类整理编辑而成。《大智小技V:数据库生产实战漫笔》为系列图书的第五期,精选近一年来社区发布的技术内容。与前几本相比,本书除继续收录MySQL新特性、故障案例等经典内容之外,还新增了OceanBase章节,该章节旨在对OceanBase官方学习资料进行实战场景补充。 -
会说话的数据[美]本·琼斯 (Ben Jones)数据是什么?如何应用数据?如何把数据变成更有价值的东西?本书主要适合刚开始使用数据的读者,能让他们对数据的含义、价值及用途有清晰的认识和了解,本书目的是介绍数据的相关知识,同时鼓励人们参与到日益增多的与数据有关的对话中。本书通过介绍简单数据相关知识,即从一个总体目标、两种思维系统、三大应用领域、四种数据尺度、五种数据分析方法、六种数据展现方式、七种数据活动、八个提前问的问题分别展开阐释数据和分析的方法和思维方式。 -
工业大数据工程田春华本书探索工业大数据的”工程方法体系”并介绍了其中的关键技术,提出了多领域的工业物理对象建模方法和查询技术。全书共10章,第1章讨论了工业大数据的内涵与特点,并给出了工业大数据工程的三个要素,即数据资源、数据分析和数据应用;第2~4章提出了领域模型驱动的数据资源的建模技术,并给出了工业大系统技术与建设方法;第5、6章讨论了敏捷工业大数据分析与运维方法,并阐述了背后的分析软件技术;第7章讨论了用户驱动的数据应用的低代码开发技术;第8~10章用风电、水电、煤矿综采三个行业,展示了工业大数据工程方法的应用过程。 -
统计学贾俊平 吴翌琳本书是一本基于 Python 实现全部例题计算的统计学教材,书中例题解答均给出了详细的实现代码和结果。全书共 11 章,第1章和第2章介绍数据、Python 的下载与安装、Python的数据类型和基本操作、Python 绘图基础等。第3章和第4章介绍数据的描述性分析方法,包括数据可视化和描述统计量。第5~7章介绍数据的推断性分析方法,包括概率分布、参数估计和假设检验。第8~11章介绍实际中常用的一些统计方法,包括类别变量分析、方差分析、回归分析、时间序列分析等。本书可作为高等院校各专业开设统计学课程的教材,也可作为数据分析工作者、Python 数据分析和可视化爱好者的参考书。 -
数据科学伦理[比]大卫·马滕斯(David,Martens)数据科学伦理是关于人们在进行数据科学方面的行为的道德规范。到目前为止,数据科学主要应用于企业和社会并产生了积极成果。然而,就像任何技术一样,数据科学也带来了一些负面后果:隐私侵犯的增加,对敏感群体的数据驱动的歧视以及使用不可解释的复杂模型做出决策。没有哪个数据科学家和业务经理是天生不道德的,只是他们没有接受过培训来考虑他们在工作中的伦理问题——本书旨在填补这个越来越重要的空白和解释不同的概念和技术,帮助读者理解从k-匿名和差别隐私到同态加密和零知识证明等技术已可以解决隐私侵犯问题,消除敏感群体歧视和提供各种可解释的人工智能。现实生活中的警世故事进一步说明了数据科学伦理的重要性和潜在影响,包括种族主义机器人的故事、搜索审查和人脸识别等。本书中穿插着结构化的练习,提供假设的场景和伦理困境,带读者一起思考如何平衡伦理问题和数据的效用。 -
Power Query M函数语言侯翔宇 著 ; 颉腾文化 出品《Power Query M函数语言:基于Excel和Power BI的数据清理进阶实战》结合大量教学范例和逻辑示意图,深入介绍Microsoft Excel和Power BI中Power Query M函数语言数据清理技术的运行逻辑和进阶使用技巧。本书按照Power Query M函数语言的知识结构,在《Power Query M函数语言:基于Excel和Power BI的数据清理轻松入门》的基础上,详细、深入地介绍运算符、关键字、数据类型、函数的高级参数,以及高级函数和特殊函数等相关知识。《Power Query M函数语言:基于Excel和Power BI的数据清理进阶实战》共9章,分为3篇。第1篇“背景知识”,主要回顾“入门分册”的知识脉络,并展望本书的知识架构。第2篇“语法进阶”,首先介绍Power Query M函数语言的高级运算符,然后介绍循环、迭代和递归的相关知识,接着介绍关键词的相关用法,最后介绍错误数据和类型数据的相关知识。第3篇“函数进阶”,归纳总结M函数语言进阶人员必须要掌握的5大类函数的高级参数的通用模式,并给出30余项高级函数和特殊函数的用法。《Power Query M函数语言:基于Excel和Power BI的数据清理进阶实战》内容丰富,实例典型,非常适合有一定Power Query M函数语言基础而想要进一步深入学习的读者阅读,也适合想要在工作中使用Power Query M函数语言的从业人员阅读,另外还适合作为案头备用备查的手册。 -
数据认知手册撒迦利亚· 沃加里斯(Zacharias Voulgaris)在数据科学研究过程中,能快速解决问题是一项不可或缺的能力。但是数据科学面临的复杂性在于,随着大数据采集的数据量越来越大,以及最优解算法越来越复杂,很多算法面临着运行非常耗时,有时甚至在现有的资源情况下不可解的状况。此时,需要数据科学家发挥工程师思维,使用一些计算量小的近似方法,在节省时间和计算资源的前提下,得到不错的结果,这些方法可以称为启发式方法。本书聚焦“启发式方法”这个主题,分5个部分进行介绍。第1部分概述了各种类型的启发式方法;第2部分侧重于面向数据的启发式方法及其在数据科学问题中的应用;第3部分诠释了面向最优化的启发式方法,以及它们如何解决具有挑战性的最优化问题;第4部分是讲解如何设计和实施新的启发式方法,以解决特定问题的相关内容;第5部分介绍了关于启发式方法的其他主题,如透明度和局限性等。本书适合从事和计划从事数据科学领域相关工作的读者阅读。 -
高效使用Redis熊浩含 等全书主要分为三部分介绍Redis。第1部分介绍Redis6中使用的数据结构,包括动态字符串、跳跃表、压缩列表、字典、整数集合和快速链表,详细介绍其基本结构及常见操作。第二部分为本书核心篇章,首先介绍了Redis6的启动流程,命令解析流程,之后对Redis6中的命令实现进行了全面的介绍,包括键命令、字符串命令、哈希表命令、列表命令、集合及有序集合命令、地理位置相关的GEO命令、统计相关的HyperLogLog命令。第三部分,主要介绍了Redis6的一些特性及使用,包括事务、持久化、主从复制以及集群等。
