书籍详情
遗传学(第10版 双语版)
作者:(美)威廉·S.克卢格
出版社:北京大学出版社
出版时间:2023-06-01
ISBN:9787301341063
定价:¥98.00
购买这本书可以去
内容简介
本书为美国经典的遗传学教材《遗传学》( 0版)的双语版改编教材。本书根据中国遗传学教学计划及各遗传学教学实际,对原书进行改编,删除与分子生物学课程重叠的内容,保留经典遗传学(1—8)章和现代遗传学进展(17—19章),补充部分遗传学背景知识,如孟德尔的经典遗传学文献、真菌的遗传分析、细菌的遗传作图、病毒的遗传作图等。全书对重点章节配有中文翻译,并补充了中英双语的高频遗传学专业词汇。此外,本书还将配备网络双语试题库供教师和学生学习使用。
作者简介
【美】威廉· S. 克卢格(William S. Klug)等:::::::威廉· S. 克卢格(William S. Klug),新泽西学院(前特兰顿州立学院)的生物学教授。自1974年起连续17年担任生物系主任。获得2004年Sigma-Pi 杰出教授奖,同年,被提名为新泽西州研究与发展委员会的年度教育工作者。宣劲松:::::::宣劲松,1999年获北京师范大学生物化学学士,2002年获北京师范大学生物化学与分子生物学硕士,2005年获 遗传发育所遗传学博士。现为北京科技大学副教授。
目录
1 Introduction to Genetics
1 绪论
1.1 Genetics Has an Interesting Early History
1.1 有趣的遗传学早期历史
1.2 Genetics Progressed from Mendel to DNA in Less Than a Century
1.2 从孟德尔到DNA ——遗传学在一个世纪内的飞速进展
1.3 Discovery of the Double Helix Launched the Era of Molecular Genetics
1.3 DNA 双螺旋结构的发现开启了分子遗传学新纪元
1.4 Development of Recombinant DNA Technology Began the Era of DNA Cloning
1.4 重组DNA 技术的发展开启了DNA 克隆时代
1.5 The Impact of Biotechnology Is Continually Expanding
1.5 生物技术的影响正持续扩大
1.6 Genomics, Proteomics, and Bioinformatics Are New and Expanding Fields
1.6 基因组学、蛋白质组学和生物信息学是日益发展的新兴领域
1.7 Genetic Studies Rely on the Use of Model Organisms
1.7 遗传学研究依赖于模式生物的使用
1.8 Genetics Has Had a Profound Impact on Society
1.8 遗传学对社会已经产生了深远影响
2 Mitosis and Meiosis
2 有丝分裂和减数分裂
2.1 Cell Structure Is Closely Tied to Genetic Function
2.1 细胞结构与遗传功能紧密相关
2.2 Chromosomes Exist in Homologous Pairs in Diploid Organisms
2.2 二倍体生物中染色体以同源染色体对的形式存在
2.3 Mitosis Partitions Chromosomes into Dividing Cells
2.3 有丝分裂将染色体分配至分裂细胞中
2.4 Meiosis Creates Haploid Gametes and Spores and Enhances Genetic Variation in Species
2.4 减数分裂产生单倍体配子和孢子并增加了物种的遗传变异
2.5 The Development of Gametes Varies in Spermatogenesis Compared to Oogenesis
2.5 精子发生与卵子发生中的配子发育差异
2.6 Meiosis Is Critical to Sexual Reproduction in All Diploid Organisms
2.6 减数分裂对于所有二倍体生物的有性生殖都至关重要
2.7 Electron Microscopy Has Revealed the Physical Structure of Mitotic and Meiotic Chromosomes
2.7 电子显微镜揭示了有丝分裂和减数分裂过程中的染色体结构
3 Mendelian Genetics
3 孟德尔遗传学
3.1 Mendel Used a Model Experimental Approach to Study Patterns of Inheritance
3.1 孟德尔使用模型实验方法研究遗传模式
3.2 The Monohybrid Cross Reveals How One Trait Is Transmitted from Generation to Generation
3.2 单因子杂交揭示了单一性状世代传递的规律
3.3 Mendel’s Dihybrid Cross Generated a Unique F2 Ratio
3.3 孟德尔双因子杂交产生独特的F2 代比例
3.4 The Trihybrid Cross Demonstrates That Mendel’s Principles Apply to Inheritance of Multiple Traits
3.4 三因子杂交表明孟德尔定律适用于多性状遗传
3.5 Mendel’s Work Was Rediscovered in the Early Twentieth Century
3.5 孟德尔的工作在20 世纪初被重新发现
3.6 Independent Assortment Leads to Extensive Genetic Variation
3.6 自由组合产生广泛的遗传变异
3.7 Laws of Probability Help to Explain Genetic Events
3.7 概率理论有助于解释遗传学事件
3.8 Chi-Square Analysis Evaluates the Influence of Chance on Genetic Data
3.8 卡方分析评估偶然性对于遗传数据的影响
3.9 Pedigrees Reveal Patterns of Inheritance of Human Trait
3.9 系谱图揭示了人类性状的遗传模式
3.10 Tay-Sachs Disease: The Molecular Basis of a Recessive Disorder in Humans
3.10 泰-萨克斯病:人类隐性遗传疾病的分子基础
4 Modification of Mendelian Ratios
4 孟德尔比率的扩展
4.1 Alleles Alter Phenotypes in Different Ways
4.1 等位基因通过不同途径影响表型
4.2 Geneticists Use a Variety of Symbols for Alleles
4.2 遗传学家使用多种符号表示等位基因
4.3 Neither Allele Is Dominant in Incomplete, or Partial, Dominance
4.3 在不 显性中没有等位基因是显性的
4.4 In Codominance, the Influence of Both Alleles in a Heterozygote Is Clearly Evident
4.4 在共显性中,杂合子两种等位基因的影响十分明显
4.5 Multiple Alleles of a Gene May Exist in a Population
4.5 生物种群中可能存在复等位基因
4.6 Lethal Alleles Represent Essential Genes
4.6 致死等位基因体现必需基因
4.7 Combinations of Two Gene Pairs with Two Modes of Inheritance Modify the 9:3:3:1 Ratio
4.7 两对基因通过两种遗传模式进行组合扩展了9 ∶ 3 ∶ 3 ∶ 1 比例
4.8 Phenotypes Are Often Affected by More Than One Gene
4.8 表型通常由一种以上的基因共同决定
4.9 Complementation Analysis Can Determine if Two Mutations Causing a Similar Phenotype Are Alleles of the Same Gene
4.9 互补分析可以判断引发相似表型的突变是否是同一基因的不同等位基因
4.10 Expression of a Single Gene May Have Multiple Effects
4.10 单基因表达可以产生多种基因效应
4.11 X-Linkage Describes Genes on the X Chromosome
4.11 X连锁描述位于X 染色体上的基因
4.12 In Sex-Limited and Sex-Influenced Inheritance, an Individual’s Gender Influences the Phenotype
4.12 在限性遗传和从性遗传中,个体的性别会影响表型
4.13 Genetic Background and the Environment Affect Phenotypic Expression
4.13 遗传背景与环境会影响表型表达
4.14 Extranuclear Inheritance Modifies Mendelian Patterns
4.14 核外遗传丰富了孟德尔遗传模式
5 Sex Determination and Sex Chromosomes
5 性别决定与性染色体
5.1 X and Y Chromosomes Were First Linked to Sex Determination Early in the Twentieth Century
5.1 20世纪初,X和Y染色体 确定与性别决定相关
5.2 The Y Chromosome Determines Maleness in Humans
5.2 Y染色体决定人类雄性发育
5.3 The Ratio of Males to Females in Humans Is Not 1.0
5.3 人类男女性别比并非1.0
5.4 Dosage Compensation Prevents Excessive Expression of X-Linked Genes in Humans and Other Mammals
5.4 剂量补偿避免人类及其他哺乳类动物X连锁基因的过量表达
5.5 The Ratio of X Chromosomes to Sets of Autosomes Can Determine Sex
5.5 X染色体数目与常染色体组数的比值可以决定性别
5.6 Temperature Variation Controls Sex Determination in Reptiles
5.6 温度变化控制爬行动物的性别决定
6 Chromosome Mutations: Variation in Number and Arrangement
6 染色体突变: 染色体数目与结构的变异
6.1 Variation in Chromosome Number: Terminology and Origin
6.1 染色体数目的变异:专业术语与起源
6.2 Monosomy and Trisomy Result in a Variety of Phenotypic Effects
6.2 单体和三体导致不同的表型效应
6.3 Polyploidy, in Which More Than Two Haploid Sets of Chromosomes Are Present, Is Prevalent in Plants
6.3 含两套以上单倍染色体组成的多倍体在植物界中广泛存在
6.4 Variation Occurs in the Composition and Arrangement of Chromosomes
6.4 染色体结构和排列顺序的变异
6.5 A Deletion Is a Missing Region of a Chromosome
6.5 缺失是染色体上发生丢失的一段区域
6.6 A Duplication Is a Repeated Segment of a Chromosome
6.6 重复是多次出现的染色体片段
6.7 Inversions Rearrange the Linear Gene Sequence
6.7 倒位将线性基因序列进行重排
6.8 Translocations Alter the Location of Chromosomal Segments in the Genome
6.8 易位改变了基因组中染色体片段的位置
6.9 Fragile Sites in Human Chromosomes Are Susceptible to Breakage
6.9 人类染色体的脆性位点
7 Linkage and Chromosome Mapping in Eukaryotes
7 真核生物的连锁与染色体作图
7.1 Genes Linked on the Same Chromosome Segregate Together
7.1 同一染色体上的连锁基因相伴分离
7.2 Crossing Over Serves as the Basis of Determining the Distance between Genes during Mapping
7.2交换是染色体作图中确定基因间距离的基础
7.3 Determining the Gene Sequence during Mapping Requires the Analysis of Multiple Crossovers
7.3 染色体作图中确定基因顺序需要分析多交换事件
7.4 As the Distance between Two Genes Increases, Mapping Estimates Become More
Inaccurate6
7.4 随着基因间距离的增加,染色体作图的 性将随之下降
7.5 Chromosome Mapping Is Now Possible Using DNA Markers and Annotated Computer Databases
7.5 当今,使用DNA 标记和计算机注释数据库进行染色体作图已成为可能
7.6 Other Aspects of Genetic Exchange
7.6 关于遗传交换的几点补充
8 Genetic Analysis and Mapping in Bacteria and Bacteriophages
8 细菌和噬菌体的遗传分析与染色体作图
8.1 Bacteria Mutate Spontaneously and Are Easily Cultured
8.1 细菌能够自发突变并易于培养
8.2 Genetic Recombination Occurs in Bacteria
8.2 细菌的基因重组
8.3 The F Factor Is an Example of a Plasmid
8.3 F 因子是一种质粒
8.4 Transformation Is Another Process Leading to Genetic Recombination in Bacteria
8.4 转化是细菌进行遗传重组的另一种方式
8.5 Bacteriophages Are Bacterial Viruses
8.5 噬菌体是细菌病毒
8.6 Transduction Is Virus-Mediated Bacterial DNA Transfer
8.6 转导是由病毒介导的细菌DNA 转移
9 Epigenetics
9 表观遗传学
9.1 Molecular Alterations to the Genome Create an Epigenome
9.1 基因组的分子变化产生了表观基因组
9.2 Epigenetics and Monoallelic Gene Expression
9.2 表观遗传学与单等位基因表达
9.3 Epigenetics and Cancer
9.3 表观遗传学与癌症
9.4 Epigenetic Traits Are Heritable
9.4 表观遗传性状具有可遗传性
9.5 Epigenome Projects and Databases
9.5 表观基因组计划与数据库
10 Genetic Testing
10 遗传检测
10.1 Testing for Prognostic or Diagnostic Purposes
10.1 预后检测和诊断检测
10.2 Prenatal Genetic Testing to Screen for Conditions
10.2 用于遗传筛查的产前遗传检测
10.3 Genetic Testing Using Allele-Specific Oligonucleotides
10.3 利用等位基因特异的寡核苷酸进行遗传检测
10.4 Microarrays for Genetic Testing
10.4 用于遗传诊断的微阵列
10.5 Genetic Analysis of Individual Genomes by DNA Sequencing
10.5 运用DNA 测序进行个体基因组遗传分析
10.6 Genome-Wide Association Studies Identify Genome Variations That Contribute to Disease
10.6 全基因组关联分析鉴定导致疾病的基因组变异
10.7 Genetic Testing and Ethical, Social, and Legal Questions
10.7 遗传检测与伦理、社会和法律问题
11 Gene Therapy
11 基因治疗
11.1 What Genetic Conditions Are Candidates for Treatment by Gene Therapy?
11.1 哪些遗传疾病有望使用基因治疗?
11.2 How Are Therapeutic Genes Delivered?
11.2 如何传送治疗基因?
11.3 The First Successful Gene Therapy Trial
11.3 基因治疗成功案例
11.4 Gene Therapy Setbacks
11.4 基因治疗的逆境
11.5 Recent Successful Trials by Conventional Gene Therapy Approaches
11.5 传统基因治疗技术的近期成功尝试
11.6 Genome-Editing Approaches to Gene Therapy
11.6 基因治疗中的基因编辑法
11.7 Future Challenges and Ethical Issues
11.7 未来的挑战及伦理问题
12 Advances in Neurogenetics: The Study of Huntington Disease
12 神经遗传学进展:亨廷顿病的研究
12.1 The Search for the Huntington Gene
12.1 寻找亨廷顿病基因
12.2 The HTT Gene and Its Protein Product
12.2 HTT 基因与其蛋白质产物
12.3 Molecular and Cellular Alterations in Huntington Disease
12.3 亨廷顿病的分子变化和细胞变化
12.4 Transgenic Animal Models of Huntington Disease
12.4 亨廷顿病的转基因动物模型
12.5 Cellular and Molecular Approaches to Therapy
12.5 治疗的细胞生物学和分子生物学方法
13 DNA Forensics
13 DNA 法医学
13.1 DNA Profiling Methods
13.1 DNA 分析方法
13.2 Interpreting DNA Profiles
13.2 DNA 图谱诠释
13.3 Technical and Ethical Issues Surrounding DNA Profiling
13.3 围绕DNA 分析的技术与伦理问题
14 Genetically Modified Foods
14 转基因食品
14.1 What Are GM Foods?
14.1 什么是转基因食品?
14.2 Methods Used to Create GM Plants
14.2 构建GM 植物的方法
14.3 GM Foods Controversies
14.3 GM 食品之争
14.4 The Future of GM Foods
14.4 GM 食品的未来
15 Genomics and Precision Medicine
15 基因组学与精准医疗
15.1 Pharmacogenomics
15.1 药物基因组学
15.2 Precision Oncology
15.2 精准肿瘤学
15.3 Precision Medicine and Disease Diagnostics
15.3 精准医疗与疾病诊断
15.4 Technical, Social, and Ethical Challenges
15.4 技术、社会和伦理的挑战
1 绪论
1.1 Genetics Has an Interesting Early History
1.1 有趣的遗传学早期历史
1.2 Genetics Progressed from Mendel to DNA in Less Than a Century
1.2 从孟德尔到DNA ——遗传学在一个世纪内的飞速进展
1.3 Discovery of the Double Helix Launched the Era of Molecular Genetics
1.3 DNA 双螺旋结构的发现开启了分子遗传学新纪元
1.4 Development of Recombinant DNA Technology Began the Era of DNA Cloning
1.4 重组DNA 技术的发展开启了DNA 克隆时代
1.5 The Impact of Biotechnology Is Continually Expanding
1.5 生物技术的影响正持续扩大
1.6 Genomics, Proteomics, and Bioinformatics Are New and Expanding Fields
1.6 基因组学、蛋白质组学和生物信息学是日益发展的新兴领域
1.7 Genetic Studies Rely on the Use of Model Organisms
1.7 遗传学研究依赖于模式生物的使用
1.8 Genetics Has Had a Profound Impact on Society
1.8 遗传学对社会已经产生了深远影响
2 Mitosis and Meiosis
2 有丝分裂和减数分裂
2.1 Cell Structure Is Closely Tied to Genetic Function
2.1 细胞结构与遗传功能紧密相关
2.2 Chromosomes Exist in Homologous Pairs in Diploid Organisms
2.2 二倍体生物中染色体以同源染色体对的形式存在
2.3 Mitosis Partitions Chromosomes into Dividing Cells
2.3 有丝分裂将染色体分配至分裂细胞中
2.4 Meiosis Creates Haploid Gametes and Spores and Enhances Genetic Variation in Species
2.4 减数分裂产生单倍体配子和孢子并增加了物种的遗传变异
2.5 The Development of Gametes Varies in Spermatogenesis Compared to Oogenesis
2.5 精子发生与卵子发生中的配子发育差异
2.6 Meiosis Is Critical to Sexual Reproduction in All Diploid Organisms
2.6 减数分裂对于所有二倍体生物的有性生殖都至关重要
2.7 Electron Microscopy Has Revealed the Physical Structure of Mitotic and Meiotic Chromosomes
2.7 电子显微镜揭示了有丝分裂和减数分裂过程中的染色体结构
3 Mendelian Genetics
3 孟德尔遗传学
3.1 Mendel Used a Model Experimental Approach to Study Patterns of Inheritance
3.1 孟德尔使用模型实验方法研究遗传模式
3.2 The Monohybrid Cross Reveals How One Trait Is Transmitted from Generation to Generation
3.2 单因子杂交揭示了单一性状世代传递的规律
3.3 Mendel’s Dihybrid Cross Generated a Unique F2 Ratio
3.3 孟德尔双因子杂交产生独特的F2 代比例
3.4 The Trihybrid Cross Demonstrates That Mendel’s Principles Apply to Inheritance of Multiple Traits
3.4 三因子杂交表明孟德尔定律适用于多性状遗传
3.5 Mendel’s Work Was Rediscovered in the Early Twentieth Century
3.5 孟德尔的工作在20 世纪初被重新发现
3.6 Independent Assortment Leads to Extensive Genetic Variation
3.6 自由组合产生广泛的遗传变异
3.7 Laws of Probability Help to Explain Genetic Events
3.7 概率理论有助于解释遗传学事件
3.8 Chi-Square Analysis Evaluates the Influence of Chance on Genetic Data
3.8 卡方分析评估偶然性对于遗传数据的影响
3.9 Pedigrees Reveal Patterns of Inheritance of Human Trait
3.9 系谱图揭示了人类性状的遗传模式
3.10 Tay-Sachs Disease: The Molecular Basis of a Recessive Disorder in Humans
3.10 泰-萨克斯病:人类隐性遗传疾病的分子基础
4 Modification of Mendelian Ratios
4 孟德尔比率的扩展
4.1 Alleles Alter Phenotypes in Different Ways
4.1 等位基因通过不同途径影响表型
4.2 Geneticists Use a Variety of Symbols for Alleles
4.2 遗传学家使用多种符号表示等位基因
4.3 Neither Allele Is Dominant in Incomplete, or Partial, Dominance
4.3 在不 显性中没有等位基因是显性的
4.4 In Codominance, the Influence of Both Alleles in a Heterozygote Is Clearly Evident
4.4 在共显性中,杂合子两种等位基因的影响十分明显
4.5 Multiple Alleles of a Gene May Exist in a Population
4.5 生物种群中可能存在复等位基因
4.6 Lethal Alleles Represent Essential Genes
4.6 致死等位基因体现必需基因
4.7 Combinations of Two Gene Pairs with Two Modes of Inheritance Modify the 9:3:3:1 Ratio
4.7 两对基因通过两种遗传模式进行组合扩展了9 ∶ 3 ∶ 3 ∶ 1 比例
4.8 Phenotypes Are Often Affected by More Than One Gene
4.8 表型通常由一种以上的基因共同决定
4.9 Complementation Analysis Can Determine if Two Mutations Causing a Similar Phenotype Are Alleles of the Same Gene
4.9 互补分析可以判断引发相似表型的突变是否是同一基因的不同等位基因
4.10 Expression of a Single Gene May Have Multiple Effects
4.10 单基因表达可以产生多种基因效应
4.11 X-Linkage Describes Genes on the X Chromosome
4.11 X连锁描述位于X 染色体上的基因
4.12 In Sex-Limited and Sex-Influenced Inheritance, an Individual’s Gender Influences the Phenotype
4.12 在限性遗传和从性遗传中,个体的性别会影响表型
4.13 Genetic Background and the Environment Affect Phenotypic Expression
4.13 遗传背景与环境会影响表型表达
4.14 Extranuclear Inheritance Modifies Mendelian Patterns
4.14 核外遗传丰富了孟德尔遗传模式
5 Sex Determination and Sex Chromosomes
5 性别决定与性染色体
5.1 X and Y Chromosomes Were First Linked to Sex Determination Early in the Twentieth Century
5.1 20世纪初,X和Y染色体 确定与性别决定相关
5.2 The Y Chromosome Determines Maleness in Humans
5.2 Y染色体决定人类雄性发育
5.3 The Ratio of Males to Females in Humans Is Not 1.0
5.3 人类男女性别比并非1.0
5.4 Dosage Compensation Prevents Excessive Expression of X-Linked Genes in Humans and Other Mammals
5.4 剂量补偿避免人类及其他哺乳类动物X连锁基因的过量表达
5.5 The Ratio of X Chromosomes to Sets of Autosomes Can Determine Sex
5.5 X染色体数目与常染色体组数的比值可以决定性别
5.6 Temperature Variation Controls Sex Determination in Reptiles
5.6 温度变化控制爬行动物的性别决定
6 Chromosome Mutations: Variation in Number and Arrangement
6 染色体突变: 染色体数目与结构的变异
6.1 Variation in Chromosome Number: Terminology and Origin
6.1 染色体数目的变异:专业术语与起源
6.2 Monosomy and Trisomy Result in a Variety of Phenotypic Effects
6.2 单体和三体导致不同的表型效应
6.3 Polyploidy, in Which More Than Two Haploid Sets of Chromosomes Are Present, Is Prevalent in Plants
6.3 含两套以上单倍染色体组成的多倍体在植物界中广泛存在
6.4 Variation Occurs in the Composition and Arrangement of Chromosomes
6.4 染色体结构和排列顺序的变异
6.5 A Deletion Is a Missing Region of a Chromosome
6.5 缺失是染色体上发生丢失的一段区域
6.6 A Duplication Is a Repeated Segment of a Chromosome
6.6 重复是多次出现的染色体片段
6.7 Inversions Rearrange the Linear Gene Sequence
6.7 倒位将线性基因序列进行重排
6.8 Translocations Alter the Location of Chromosomal Segments in the Genome
6.8 易位改变了基因组中染色体片段的位置
6.9 Fragile Sites in Human Chromosomes Are Susceptible to Breakage
6.9 人类染色体的脆性位点
7 Linkage and Chromosome Mapping in Eukaryotes
7 真核生物的连锁与染色体作图
7.1 Genes Linked on the Same Chromosome Segregate Together
7.1 同一染色体上的连锁基因相伴分离
7.2 Crossing Over Serves as the Basis of Determining the Distance between Genes during Mapping
7.2交换是染色体作图中确定基因间距离的基础
7.3 Determining the Gene Sequence during Mapping Requires the Analysis of Multiple Crossovers
7.3 染色体作图中确定基因顺序需要分析多交换事件
7.4 As the Distance between Two Genes Increases, Mapping Estimates Become More
Inaccurate6
7.4 随着基因间距离的增加,染色体作图的 性将随之下降
7.5 Chromosome Mapping Is Now Possible Using DNA Markers and Annotated Computer Databases
7.5 当今,使用DNA 标记和计算机注释数据库进行染色体作图已成为可能
7.6 Other Aspects of Genetic Exchange
7.6 关于遗传交换的几点补充
8 Genetic Analysis and Mapping in Bacteria and Bacteriophages
8 细菌和噬菌体的遗传分析与染色体作图
8.1 Bacteria Mutate Spontaneously and Are Easily Cultured
8.1 细菌能够自发突变并易于培养
8.2 Genetic Recombination Occurs in Bacteria
8.2 细菌的基因重组
8.3 The F Factor Is an Example of a Plasmid
8.3 F 因子是一种质粒
8.4 Transformation Is Another Process Leading to Genetic Recombination in Bacteria
8.4 转化是细菌进行遗传重组的另一种方式
8.5 Bacteriophages Are Bacterial Viruses
8.5 噬菌体是细菌病毒
8.6 Transduction Is Virus-Mediated Bacterial DNA Transfer
8.6 转导是由病毒介导的细菌DNA 转移
9 Epigenetics
9 表观遗传学
9.1 Molecular Alterations to the Genome Create an Epigenome
9.1 基因组的分子变化产生了表观基因组
9.2 Epigenetics and Monoallelic Gene Expression
9.2 表观遗传学与单等位基因表达
9.3 Epigenetics and Cancer
9.3 表观遗传学与癌症
9.4 Epigenetic Traits Are Heritable
9.4 表观遗传性状具有可遗传性
9.5 Epigenome Projects and Databases
9.5 表观基因组计划与数据库
10 Genetic Testing
10 遗传检测
10.1 Testing for Prognostic or Diagnostic Purposes
10.1 预后检测和诊断检测
10.2 Prenatal Genetic Testing to Screen for Conditions
10.2 用于遗传筛查的产前遗传检测
10.3 Genetic Testing Using Allele-Specific Oligonucleotides
10.3 利用等位基因特异的寡核苷酸进行遗传检测
10.4 Microarrays for Genetic Testing
10.4 用于遗传诊断的微阵列
10.5 Genetic Analysis of Individual Genomes by DNA Sequencing
10.5 运用DNA 测序进行个体基因组遗传分析
10.6 Genome-Wide Association Studies Identify Genome Variations That Contribute to Disease
10.6 全基因组关联分析鉴定导致疾病的基因组变异
10.7 Genetic Testing and Ethical, Social, and Legal Questions
10.7 遗传检测与伦理、社会和法律问题
11 Gene Therapy
11 基因治疗
11.1 What Genetic Conditions Are Candidates for Treatment by Gene Therapy?
11.1 哪些遗传疾病有望使用基因治疗?
11.2 How Are Therapeutic Genes Delivered?
11.2 如何传送治疗基因?
11.3 The First Successful Gene Therapy Trial
11.3 基因治疗成功案例
11.4 Gene Therapy Setbacks
11.4 基因治疗的逆境
11.5 Recent Successful Trials by Conventional Gene Therapy Approaches
11.5 传统基因治疗技术的近期成功尝试
11.6 Genome-Editing Approaches to Gene Therapy
11.6 基因治疗中的基因编辑法
11.7 Future Challenges and Ethical Issues
11.7 未来的挑战及伦理问题
12 Advances in Neurogenetics: The Study of Huntington Disease
12 神经遗传学进展:亨廷顿病的研究
12.1 The Search for the Huntington Gene
12.1 寻找亨廷顿病基因
12.2 The HTT Gene and Its Protein Product
12.2 HTT 基因与其蛋白质产物
12.3 Molecular and Cellular Alterations in Huntington Disease
12.3 亨廷顿病的分子变化和细胞变化
12.4 Transgenic Animal Models of Huntington Disease
12.4 亨廷顿病的转基因动物模型
12.5 Cellular and Molecular Approaches to Therapy
12.5 治疗的细胞生物学和分子生物学方法
13 DNA Forensics
13 DNA 法医学
13.1 DNA Profiling Methods
13.1 DNA 分析方法
13.2 Interpreting DNA Profiles
13.2 DNA 图谱诠释
13.3 Technical and Ethical Issues Surrounding DNA Profiling
13.3 围绕DNA 分析的技术与伦理问题
14 Genetically Modified Foods
14 转基因食品
14.1 What Are GM Foods?
14.1 什么是转基因食品?
14.2 Methods Used to Create GM Plants
14.2 构建GM 植物的方法
14.3 GM Foods Controversies
14.3 GM 食品之争
14.4 The Future of GM Foods
14.4 GM 食品的未来
15 Genomics and Precision Medicine
15 基因组学与精准医疗
15.1 Pharmacogenomics
15.1 药物基因组学
15.2 Precision Oncology
15.2 精准肿瘤学
15.3 Precision Medicine and Disease Diagnostics
15.3 精准医疗与疾病诊断
15.4 Technical, Social, and Ethical Challenges
15.4 技术、社会和伦理的挑战
猜您喜欢