书籍详情
微积分II
作者:林春进,杨永富,朱露,沈一颖
出版社:河海大学出版社
出版时间:2023-08-01
ISBN:9787563076321
定价:¥79.00
内容简介
书稿为河海大学理学院教师团队编写的留学生教材。书稿为全英文写作,在Calculus I (《微积分I》)的础上对微积分知识进行了拓展和深入,全书共分为向量和空间几何、偏微分、多重积分、线积分和球面积分、无穷级数五章,章节结构安排合理,写作规范。书稿对基本概念、定理、定义的阐述准确无误,辅助图表清晰直观,例题具有较强的典型性,进解思路清晰,课后练习难易程度相当,有利于学生巩固和拓展所学知识。书稿中无政治性、学术性问题。
作者简介
暂缺《微积分II》作者简介
目录
1 Vectors and the Geometry of Space
1.1 Rectangular Coordinate System
1.2 Vector
1.3 Equations for Lines and Planes
1.4 Cylinders and Quadric Surfaces
1.5 Parametric Curves and Parametric Surfaces
2 Partial Derivatives
2.1 Functions of Several Variables
2.2 Limits and Continuity
2.3 Partial Derivatives
2.4 Linear Approximation
2.5 Chain Rules
2.6 Directional Derivative and Gradient
2.7 Maximum and Minimum Values
2.8 Lagrange Multiplier
3 Multiple Integrals
3.1 Double Integrals and Iterated Integrals
3.2 Double Integrals over General Regions
3.3 Double Integral in Polar Coordinates
3.4 Triple Integrals in Rectangular Coordinates
3.5 Triple Integrals in Cylindrical Coordinates
3.6 Triple Integrals in Spherical Coordinates
3.7 Applications of Multiple Integrals
3.8 Change of Variables in Multiple Integrals
4 Line Integrals and Surface Integrals
4.1 Line Integrals
4.2 Line Integrals of Vector Fields
4.3 Path Independence
4.4 Green's Theorem
4.5 Parametric Surface and Their Areas
4.6 Surface Integral
4.7 Surface Integrals of Vector Fields
4.8 Gauss' Theorem
4.9 Stokes' Theorem
5 Infinite Series
5.1 Basic Concepts
5.2 The Integral Test
5.3 The Comparison Tests
5.4 Alternating Series
5.5 Absolute Convergence and Conditional Convergence
5.6 Power Series
5.7 Term-by-term Differentiation and Integration
5.8 Taylor and Maclaurin Series
5.9 Fourier Series
Bibliography
1.1 Rectangular Coordinate System
1.2 Vector
1.3 Equations for Lines and Planes
1.4 Cylinders and Quadric Surfaces
1.5 Parametric Curves and Parametric Surfaces
2 Partial Derivatives
2.1 Functions of Several Variables
2.2 Limits and Continuity
2.3 Partial Derivatives
2.4 Linear Approximation
2.5 Chain Rules
2.6 Directional Derivative and Gradient
2.7 Maximum and Minimum Values
2.8 Lagrange Multiplier
3 Multiple Integrals
3.1 Double Integrals and Iterated Integrals
3.2 Double Integrals over General Regions
3.3 Double Integral in Polar Coordinates
3.4 Triple Integrals in Rectangular Coordinates
3.5 Triple Integrals in Cylindrical Coordinates
3.6 Triple Integrals in Spherical Coordinates
3.7 Applications of Multiple Integrals
3.8 Change of Variables in Multiple Integrals
4 Line Integrals and Surface Integrals
4.1 Line Integrals
4.2 Line Integrals of Vector Fields
4.3 Path Independence
4.4 Green's Theorem
4.5 Parametric Surface and Their Areas
4.6 Surface Integral
4.7 Surface Integrals of Vector Fields
4.8 Gauss' Theorem
4.9 Stokes' Theorem
5 Infinite Series
5.1 Basic Concepts
5.2 The Integral Test
5.3 The Comparison Tests
5.4 Alternating Series
5.5 Absolute Convergence and Conditional Convergence
5.6 Power Series
5.7 Term-by-term Differentiation and Integration
5.8 Taylor and Maclaurin Series
5.9 Fourier Series
Bibliography
猜您喜欢