书籍详情

电磁学中的无穷空间并矢格林函数(英文版)

电磁学中的无穷空间并矢格林函数(英文版)

作者:(巴基)穆罕默德·法拉,(美)阿赫列什·拉赫基亚

出版社:哈尔滨工业大学出版社

出版时间:2021-07-01

ISBN:9787560394695

定价:¥88.00

购买这本书可以去
内容简介
  本书共包括5章,第1章概述了查找无限空间并矢格林函数的基本概念和方法;第2章和第3章着重讨论了当特定类型的介质占据所有空间时以封闭形式已知的那些并矢格林函数;第4章提供了已知的格林函数的双线性展开式,该介质可以是各向同性、各向异性或双各向异性的;第5章专门讨论了散射问题所需的曲面和体积积分方程。本书提供了许多衍生题目来训练读者寻找无限空间中的并矢格林函数的能力。对于一些介质,本书说明了由简单来源而产生的电场和磁场相量的这些并矢格林函数的用处。
作者简介
  穆罕默德·法拉(MuhammadFaryad),印度物理学家,他是拉合尔管理科学大学物理系的助理教授。他在旁遮普大学获得了数学和物理学学士学位(2002年),在真纳大学获得了电子学硕士学位(2006年)和哲学硕士学位(2008年),2012年在宾夕法尼亚州立大学获得了工程科学与力学博士学位。他是《国际光与电子光学期刊(Optik)》(International Journal ofLight and Electron Optics(Optik))的高级策划编辑。目前他的研究兴趣包括复杂介质的电磁、表面电磁波、光子晶体和太阳能电池。
目录
Preface
Acknowledgments
Author biographies
1 Introduction
1.1 Concept of infinite-space dyadic Green functions
1.2 Examples of linear operators
1.2.1 RL circuit
1.2.2 Sound wave
1.2.3 Plate vibration
1.2.4 Helmholtz operator
1.3 Linear electromagnetism
1.3.1 Dyadic Green functions for field phasors
1.3.2 Dyadic Green functions for vector potential phasors
1.4 Solution approaches
1.4.1 Spatial-Fourier-transfor m approach
1.4.2 Direct approach
1.4.3 Eigenfunction-expansion approach
1.4.4 Scalarization approach
1.5 Organization of the monograph
References
2 Isotropic and biisotropic mediums
2.1 Isotropic dielectric-magnetic medium
2.1.1 Dyadic Green functions
2.1.2 Radiation from a point-electric dipole
2.1.3 Radiation fro m a point-magnetic dipole
2.1.4 Radiation from an electrically small electric-current loop
2.2 Isotropic chiral medium
2.2.1 Dyadic Green functions
2.2.2 Radiation fro m a point-electric dipole
2.2.3 Radiation from a point-magnetic dipole
2.2.4 Radiation fro m an electrically s mall electric-current loop
2.3 Lorentz-nonreciprocal biisotropy
References
3 Anisotropic and bianisotropic mediums
3.1 Symmetry and antisymmetry
3.2 Uniaxial mediums
3.3 Uniaxial dielectric medium
3.3.1 Dyadic Green functions
3.3.2 Radiation from a point-electric dipole
3.3.3 Radiation from a point-magnetic dipole
3.4 Uniaxial magnetic medium
3.5 Uniaxial dielectric-magnetic medium
3.5.1 Dyadic Green functions
3.5.2 Radiation from a point-electric dipole
3.5.3 Radiation from a point-magnetic dipole
3.6 Lorentz-reciprocal, axially uniaxial, bianisotropic medium
3.7 Lorentz-nonreciprocal, axially uniaxial, bianisotropic medium
3.8 Lorentz-reciprocal, anisotropic chiral, isotropic diclectric-magnctic
medium
3.9 Anisotropic dielectric-magnetic medium with cross-handed gyrotropy
3.10 General self-dual bianisotropic medium
3.11 A special gyrotropic bianisotropic medium
3.12 General uniaxial bianisotropic medium
3.12.1 Non-gyrotropic medium
3.12.2 Gyrotropic medium
3.13 Transformable medium
3.13.1 Dyadic Green functions
3.13.2 Extensions
3.13.3 Pathologically unirefringent, uniaxial dielectric-magnetic
Medium inspired by general relativity
3.13.4 Orthorhombic dielectric-magnetic mediu m with
3.13.5 gyrotropic magnetoelectric properties
References
4 Bilinear expansions
4.1 Isotropic diclectric-magnetic medium
4.1.1 Cartesian coordinate system
4.1.2 Cvlindrical coordinate system
4.1.3 Spherical coordinate system
4.2 Isotropic chiral medium
4.2.1 Cartesian coordinate system
4.2.2 Cylindrical coordinate system
4.2.3 Spherical coordinate system
4.3 Orthorhombic dielectric-magnetic medium with gyrotropic
magnetoelectric properties
4.3.1 Special case:a = a,= a
References
5 Applications of dyadic Green functions
5.1 The Ewald-Oseen extinction theorem
5.1.1 Constitutive relations
5.1.2 Dyadic Green functions
5.1.3 Huygens principle
5.1.4 Ewald-Oseen extinction theorem
5.1.5 Surface integral equations for scattering
5.2 Fields in the source region
5.2.1 Depolarization dyadic
5.2.2 Depolarization dyadics for bianisotropic mediums
5.3 Volume integral equations for scattering
5.3.1 Formulation
5.3.2 Method of moments
5.3.3 Polarizability-density dyadics
5.3.4 Coupled-dipole method
5.4 Homogenization
References
Appendix A: Dyadics and dyads
编辑手记
猜您喜欢

读书导航