书籍详情

冲击爆炸荷载作用下的超高性能水泥基材料(英文版)

冲击爆炸荷载作用下的超高性能水泥基材料(英文版)

作者:方秦

出版社:科学出版社

出版时间:2021-03-01

ISBN:9787030676986

定价:¥398.00

购买这本书可以去
内容简介
暂缺《冲击爆炸荷载作用下的超高性能水泥基材料(英文版)》简介
作者简介
暂缺《冲击爆炸荷载作用下的超高性能水泥基材料(英文版)》作者简介
目录
Static Mechanical Properties of UHPCC 1 
1.1 Introduction . 1 
1.2 Test Program 2 
1.2.1 Raw Materials and Mixture Proportions . 2 
1.2.2 Specimen Preparation and Curing 4 
1.3 Instrumentation and Loading Scheme . 5 
1.3.1 Cubic Compressive Test . 5 
1.3.2 Axial Compressive Test 6 
1.3.3 Direct Tensile Test 7 
1.3.4 Four­Point Flexural Test . 8 
1.3.5 Three­Point Flexural Test 9 
1.4 Test Results and Discussion 10 
1.4.1 Compression Test 10 
1.4.2 Direct Tension Test . 14 
1.4.3 Four­Point Flexure Test 17 
1.4.4 Three­Point Flexure Test . 21 
1.5 Summary . 27 
References 28 
2 Dynamic Compressive Mechanical Properties of UHPCC . 31 
2.1 Introduction . 31 
2.2 Specimen Preparation 32 
2.3 SHPB Test 33 
2.3.1 Test Device . 33 
2.3.2 Test Technique 34 
2.4 Test Results and Discussions . 37 
2.4.1 Stress Equilibrium 37 
2.4.2 Strain Rate Determination 38 
2.4.3 Dynamic Failure Pattern . 39 
2.4.4 Dynamic Stress–Strain Curve . 40 
2.4.5 Dynamic Increase Factor . 44 
2.4.6 Energy Absorption Capacity 48 
ix 
x Contents 
2.5 Visco­Elastic Damage Model 49 
2.5.1 Nonlinear Visco­Elastic Model 49 
2.5.2 Model Calibration and Validation 51 
2.6 Summary . 51 
References 53 
3 Dynamic Tensile Mechanical Properties of UHPCC 55 
3.1 Introduction . 55 
3.2 Specimen Preparation 56 
3.3 Dynamic Spalling Test . 57 
3.3.1 Test Device . 57 
3.3.2 Test Technique 58 
3.4 Test Results and Discussions . 61 
3.4.1 Dynamic Failure Patterns 61 
3.4.2 Dynamic Spalling Strength . 63 
3.4.3 Relations Between the Critical Time to Fracture 
and Dynamic Spalling Strength 66 
3.4.4 Dynamic Increase Factor . 67 
3.5 Summary . 70 
References 71 
4 Triaxial Compressive Behavior of UHPCC and Application 
in the Numerical Analyses of Projectile Impact 73 
4.1 Introduction . 73 
4.2 A Review of the Existing Works on Triaxial Behavior 
of Concrete 74 
4.3 Mixing Optimization of UHPCC and Triaxial Compression 
Test 76 
4.3.1 Compositions . 76 
4.3.2 Mixing Procedure 78 
4.3.3 Triaxial Compression Test . 79 
4.4 Results and Analysis . 80 
4.4.1 Failure Pattern . 80 
4.4.2 Stress–Strain Curve . 81 
4.4.3 Failure Criteria 85 
4.4.4 Toughness 90 
4.5 Applications in the Numerical Analyses 92 
4.5.1 Brief Introduction of HJC Constitutive Model . 92 
4.5.2 HJC Model Parameters for HSC . 94 
4.5.3 Validations 95 
4.6 Summary . 98 
References 101 
Contents xi 
5 Projectile Penetrations into Coarse Aggregated UHPCC 
Targets 105 
5.1 Introduction . 105 
5.2 Basalt Aggregated UHPCC Target 108 
5.2.1 Target 108 
5.2.2 Projectile . 109 
5.2.3 Test Setup 113 
5.2.4 Test Results . 114 
5.2.5 Discussions . 116 
5.3 Corundum Aggregated UHPCC Target 121 
5.3.1 Target and Projectile 121 
5.3.2 Test Results . 122 
5.3.3 Discussions . 127 
5.4 Numerical Simulations Based on 3D Mesoscopic Concrete 
Model 138 
5.4.1 3D Mesoscopic Concrete Model . 138 
5.4.2 Validations 148 
5.4.3 Impact Resistance of Different Aggregated UHPC . 153 
5.5 Summary . 158 
References 161 
6 Impact Resistance of Basalt Aggregated UHP­SFRC/Fabric 
Composite Panels Against Small Caliber Arm 163 
6.1 Introduction . 163 
6.2 Bullet Perforation Test . 165 
6.2.1 Bullet 165 
6.2.2 UHP­BASFRC Panels . 165 
6.2.3 Fabric Strengthening 167 
6.2.4 Test Setup 169 
6.3 Test Results . 170 
6.3.1 Damage of Target 170 
6.3.2 Dimension of Crater 174 
6.3.3 Perforation Limit 175 
6.3.4 Recovered Bullet 176 
6.3.5 Damage of Aluminum Plate 177 
6.4 Discussions . 177 
6.4.1 Crater Dimensions 177 
6.4.2 Terminal Ballistic Parameter . 179 
6.4.3 Fabric Effect 183 
6.5 Summary . 184 
References 184 
xii Contents 
7 Impact Resistance of Armsector Steel/Ceramic/UHPCC 
Layered Composite Targets Against 30CrMnSiNi2A Steel 
Projectiles 187 
7.1 Introduction . 187 
7.2 Impact Test on 10CrNi3MoV21A Armor Steel/SiC 
Ceramic/UHPCC Composite Targets and Numerical 
Simulations . 190 
7.2.1 Impact Test . 190 
7.2.2 Numerical Simulations 201 
7.3 Impact Test on NP450 Armor Steel/UHPCC and NP500 
Armor Steel/UHPCC Composite Targets and Numerical 
Simulations . 217 
7.3.1 Impact Test . 217 
7.3.2 Numerical Simulations 222 
7.4 Summary . 232 
References 233 
8 Response of UHPCC­FST Subjected to Low­Velocity Impact 237 
8.1 Introduction . 237 
8.2 Test Program 239 
8.2.1 UHPCC­FST Specimens . 239 
8.2.2 Axial Compression Test . 240 
8.2.3 Drop­Hammer Impact Test . 243 
8.3 Test Results and Discussions . 244 
8.3.1 Axial Compression 244 
8.3.2 Lateral Impact Resistance 245 
8.3.3 Impact Force–Time History 246 
8.3.4 Deflection­Time History . 247 
8.4 Calibration of K&C Model Parameters for UHPCC 248 
8.4.1 Brief Introduction of K&C Model 249 
8.4.2 Calibration 251 
8.5 Numerical Simulation 260 
8.5.1 Present Test . 260 
8.5.2 Yoo et al. (2015) Test 264 
8.6 Summary . 266 
References 267 
9 Dynamic Responses of Reinforced UHPCC Members Under 
Low­Velocity Lateral Impact 271 
9.1 Introduction . 271 
9.2 Test Program 274 
9.2.1 Specimen Fabrication . 274 
9.2.2 Drop­Hammer Impact Test . 275 
Contents xiii 
9.3 Test Results and Discussions . 277 
9.3.1 FailureMode 277 
9.3.2 Impact Force–Time History 280 
9.3.3 Deflection­Time History . 284 
9.3.4 Energy Dissipation 287 
9.4 Numerical Simulation 288 
9.4.1 FE Model . 288 
9.4.2 Calibration 289 
9.4.3 Comparisons of Numerical Results with Test Data . 300 
9.5 Further Validations 304 
9.5.1 Reinforced UHPCMembers 305 
9.5.2 UHPC­FSTMembers . 310 
9.6 Summary . 313 
References 315 
10 Residual Axial Capacity of UHPCC­FST Column Under 
Contact Explosion . 319 
10.1 Introduction . 319 
10.2 Review of the ExistingWorks 321 
10.3 UHPCC­FST Columns . 322 
10.3.1 Fabrications . 323 
10.3.2 Steel Tube 324 
10.3.3 UHPCC 325 
10.4 Field Contact Explosion Test . 325 
10.4.1 Test Setup 325 
10.4.2 Test Results . 327 
10.5 Axial Compression Test 329 
10.5.1 Test Setup 329 
10.5.2 Test Results . 330 
10.6 Numerical Simulation 336 
10.6.1 FE Model . 336 
10.6.2 Material Model 338 
10.6.3 Loading Scheme . 345 
10.7 Comparisons with Test Data . 346 
10.7.1 Damage and Failure Modes of Columns . 346 
10.7.2 Residual Axial Capacity and Failure Mode 
of Columns . 350 
10.8 Parametric Study 355 
10.8.1 Steel Tube Thickness and Strength . 355 
10.8.2 Core Concrete Strength and Cross­Sectional 
Diameter . 357 
10.8.3 Influence of Varied Parameters on Damage Index 362 
10.9 Summary . 363 
References 364 
xiv Contents 
11 Experimental and Numerical Study of UHPCC­FST Columns 
Subjected to Close­Range Explosion 369 
11.1 Introduction . 369 
11.2 Explosion Test on UHPCC­FST Column . 371 
11.2.1 Specimens 371 
11.2.2 Test Setup 373 
11.2.3 Test Results and Analyses 373 
11.3 Analytical Methods for Predicting the Dynamic Responses 
of UHPCC­FST Columns 377 
11.3.1 ALEMethod 377 
11.3.2 VelocityMethod . 381 
11.3.3 SDOFMethod 384 
11.3.4 Comparisons of Predictions by Different Methods . 388 
11.4 Further Numerical Analyses and Discussion . 389 
11.5 Summary . 392 
References 393 
12 Experimental Study on the Residual Seismic Resistance 
of UHPCC Filled Steel Tube (UHPCC­FST) After Contact 
Explosion . 397 
12.1 Introduction . 397 
12.2 UHPCC­FST Specimens . 399 
12.2.1 Steel Tube 399 
12.2.2 UHPCC 400 
12.2.3 Fabrications . 401 
12.3 Contact Explosion Test . 403 
12.3.1 Test Setup 403 
12.3.2 Test Results and Discussions . 404 
12.4 Low­Frequency Cyclic Loading Test 408 
12.4.1 Test Setup 408 
12.4.2 Test Results and Discussions . 409 
12.5 Assessment of Residual Seismic Resistance 
of the Post­blast Column . 423 
12.6 Summary . 426 
References 427 
13 Experimental and Numerical Studies on Dynamic Behavior 
of Reinforced UHPCC Panel Under Medium­Range 
Explosions 431 
13.1 Introduction . 431 
13.2 Review of the ExistingWork . 432 
13.3 Field Blast Test . 435 
13.3.1 Specimen . 435 
13.3.2 Test Setup 436 
13.3.3 Test Results and Discussions . 439 
Contents xv 
13.4 Numerical Simulation 453 
13.4.1 FE Model . 453 
13.4.2 Material Model of UHPCC . 454 
13.4.3 Material Model of NSC 463 
13.4.4 Material Models for Rebar and Support . 463 
13.5 Comparisons of Numerical Results with Test Data . 464 
13.5.1 Overpressures­Time History 464 
13.5.2 Deflection­Time History . 466 
13.5.3 Post­blast Damage 466 
13.6 Summary . 468 
References 470 
14 Constitutive Modelling of UHPCC Material Under Impact 
and Blast Loadings 475 
14.1 Introduction . 475 
14.2 UHPCC Material Model 478 
14.2.1 Brief Introduction of the Original Kong­Fang 
Concrete Model . 478 
14.2.2 New Tensile Damage Model 480 
14.2.3 Parameter Calibration . 484 
14.3 Single Element Tests . 489 
14.3.1 Unconfined Uniaxial Tests . 489 
14.3.2 Triaxial Compression Test . 490 
14.4 Experimental Validation 491 
14.4.1 UHPCC­FST Column Subjected to Low Speed 
Impact . 492 
14.4.2 UHPCC­FST Column Subjected to Near 
Explosion 495 
14.4.3 Reinforced UHPCC Slab Subjected to Blast 
Loading 498 
14.5 Summary . 500 
References 501 
猜您喜欢

读书导航