书籍详情

再生水纳米线电穿孔消毒技术研究(英文版)

再生水纳米线电穿孔消毒技术研究(英文版)

作者:霍正洋

出版社:清华大学出版社

出版时间:2022-11-01

ISBN:9787302617075

定价:¥99.00

购买这本书可以去
内容简介
  《再生水纳米线电穿孔消毒技术研究(英文版)》基于多孔电极内部过滤处理模式开发了纳米线电穿孔消毒技术,可利用纳米线尖端强电场实现在极低电压下对再生水中微生物的高效灭活。内容包括:1. 开发内部过滤纳米线电穿孔消毒技术,实现低电压安全消毒;2. 揭示纳米线电穿孔消毒技术可抑制灭活细菌复活的重要规律;3. 发现采用高频交流供电(10E6 Hz)模式可有效延长电极使用寿命。研究工作解决了现有消毒技术效率低、微生物易复活、消毒副产物多等难题,具有重要的理论意义和应用价值。 《再生水纳米线电穿孔消毒技术研究(英文版)》可供高等院校环境工程、市政工程、电化学等专业的研究人员使用,也可供相关领域的工程技术人员参考。
作者简介
  霍正洋,清华大学环境学院工学博士。现受Korea research fellowship资助于韩国成均馆大学先进材料科学与工程学院任研究教授。清华大学优秀博士毕业生。于高水平SCI期刊发表论文20余篇。研究领域:纳米材料在环境中应用,基于纳米发电机新型环境净化技术,高效消毒技术,再生水生物风险评价与控制。
目录
Chapter 1Introduction
1.1Research background
1.1.1Significance of wastewater reclamation 
and reuse
1.1.2Necessity of wastewater reclamation 
and reuse
1.1.3Challenges of the existing disinfection 
technology
1.2Electroporation disinfection
1.2.1Electroporation for biomedical application
1.2.2Electroporation for water disinfection
1.3Current research status of novel electroporation 
disinfection
1.3.1Nanowireassisted electroporation for water 
disinfection
1.3.2Current reactor for nanowireassisted 
electroporation disinfection
1.3.3Methods for insitu nanowire fabrication
1.3.4Impact of the nanowire morphology on 
electroporation disinfection
1.3.5Nanomaterial strengthening method and electrode 
lifetime improvement method
1.3.6Treatment efficiency of nanomaterialenabled 
disinfection technology for reclaimed 
wastewater
1.4Research topics to be further investigated
1.5Research objective and content 
1.5.1Research objective
1.5.2Research content
1.5.3Research roadmap
Chapter 2Development of nanowiremodified electrodes and investigation 
of the microbial inactivation performance 
2.1Research background
2.2Experimental materials and methods
2.2.1Experimental reagents
2.2.2CuO nanowiremodified copper foam electrodes 
fabrication and disinfection device 
construction
2.2.3Characterization of CuO nanowiremodified 
copper foam electrodes
2.2.4Microbes and water samples used in 
experiments
2.2.5Nanowireassisted electroporation for microbial 
disinfection
2.2.6Bacterial storage after nanowireassisted 
electroporation disinfection
2.2.7Free chlorine detection and current detection 
during nanowireassisted electroporation 
disinfection
2.2.8Copper ion concentration detection 
2.2.9Bacterial morphology analysis 
2.2.10Bacterial staining experiments
2.3Fabrication of CuO nanowiremodified  copper 
foam electrodes
2.4Disinfection efficiency of CuO nanowiremodified copper 
foam electrodes
2.4.1Disinfection efficiency of E.coli.
2.4.2Disinfection efficiency of E. faecalis, B.subtilis, 
and secondary effluent from municipal wastewater 
treatment plants
2.4.3Current fluctuations and free chlorine generation 
during the disinfection process
2.5Bacterial inactivation mechanisms of nanowireassisted 
electroporation disinfection
2.5.1Cell morphology analysis
2.5.2Bacterial staining analysis
2.6Bacterial population fluctuations during the storage 
process after disinfection
2.6.1Bacterial population fluctuations during the 
storage process
2.6.2Structural analysis of bacterial morphology 
during storage after lowdosage nanowireassisted 
electroporation disinfection
2.6.3Summary of the tendency of bacterial changes 
during storage after disinfection
2.7Summary of this chapter
 
Chapter 3Effect of the nanowire morphology and electrode structure 
on microbial inactivation 
3.1Research background
3.2Experimental materials and methods
3.2.1Experimental reagents
3.2.2Preparation of porous electrodes modified with 
nanowires of different morphologies
3.2.3Construction of nanowireassisted electroporation 
disinfection devices with different electrode 
structures
3.2.4Characterization of CuO nanowiremodified 
copper foam electrode
3.2.5Microbes and water samples used in 
experiments
3.2.6Nanowireassisted electroporation for microbial 
disinfection
3.2.7Investigation of the disinfection contribution 
of positive and negative electrode and 
optimization of the reactor design
3.3Investigation on the effect of CuO nanowire morphology 
on bacterial disinfection
3.3.1Factors impacting the morphology of 
CuO 
nanowires
3.3.2Study on the impact of CuO nanowire 
morphology on bacterial disinfection
3.4Investigation on the effect of electrode structure on 
bacterial disinfection
3.4.1Investigation of the effect of electrode pore 
size on bacterial disinfection
3.4.2Investigation of the effect of electrode thickness 
on bacterial disinfection
3.5Investigation on the effect of electrode arrangement 
on bacterial disinfection
3.5.1Contribution of positive and negative electrodes 
to microbial inactivation during nanowireassisted 
electroporation disinfection 
3.5.2Reactor optimization to enhance electroporation 
disinfection efficiency
3.6Summary of this chapter
Chapter 4Fabrication of highdurability nanowiremodified electrodes 
and investigation of their microbial 
disinfection performance
4.1Research background
4.2Experimental materials and methods
4.2.1Experimental reagents
4.2.2Fabrication of Cu3P nanowiremodified copper 
foam electrode
4.2.3Construction of nanowireassisted electroporation 
disinfection devices
4.2.4Characterization and elemental analysis 
of 
nanowiremodified electrode
4.2.5Microbes and water samples used in 
experiments
4.2.6Cu3P nanowireassisted electroporation for 
microbial disinfection
4.2.7Analysis of microbial inactivation 
mechanisms
4.2.8Analysis of the disinfection efficiency using 
nanowiremodified electrodes for 
longterm operation
4.2.9Analysis of the loss mechanism of electrode 
during longterm operation
4.3Fabrication and characterization of Cu3P 
nanowiremodified electrodes
4.3.1Fabrication of Cu3P nanowiremodified 
electrodes
4.3.2Characterization of Cu3P nanowiremodified 
electrodes
4.4Disinfection efficiency and mechanism of nanowire
assisted electroporation using Cu3P nanowiremodified 
electrodes
4.4.1Disinfection efficiency of nanowireassisted 
electroporation using Cu3P nanowiremodified 
electrodes
4.4.2Disinfection mechanisms of nanowireassisted 
electroporation  using Cu3P nanowiremodified 
electrodes
4.5Longterm disinfection performance and electrode 
loss mechanism
 
4.5.1Longterm disinfection performance of Cu3P 
nanowiremodified electrodes
4.5.2Electrode loss phenomenon during the 
longterm operation
4.5.3Loss mechanism of Cu3P nanowiremodified 
electrode
4.6Summary of this chapter
Chapter 5Surface coating on nanowiremodified electrode 
lifetime enhancement
5.1Research background
5.2Experimental materials and methods
5.2.1Experimental reagents
5.2.2Fabrication of polydopamine (PDA)coated 
nanowiremodified electrodes
5.2.3Characterization of PDAcoated nanowire
modified electrodes
5.2.4Disinfection device construction using PDA
coated nanowiremodified electrodes
5.2.5Microbes and water samples used 
in experiments
5.2.6Electroporation disinfection for microbes using 
PDAcoated nanowiremodified electrodes
5.2.7Analysis of the disinfection efficiency 
using nanowiremodified electrodes for long
term operation
5.2.8Analysis of the loss mechanism of electrode 
during longterm operation
5.3Fabrication of PDAcoated nanowiremodified 
electrodes
5.3.1Fabrication of PDAcoated CuO 
nanowiremodified electrodes
5.3.2Characterization of PDAcoated CuO 
nanowiremodified electrodes
5.3.3Fabrication of PDAcoated Cu3P 
nanowiremodified electrodes
5.3.4Characterization of PDAcoated Cu3P 
nanowiremodified electrodes
5.4Electroporation disinfection efficiency of PDAcoated 
nanowiremodified electrodes
5.4.1Disinfection efficiency of PDAcoated 
nanowiremodified electrodes
5.4.2Analysis of the disinfection mechanism of 
PDAcoated nanowiremodified electrodes
5.5Longterm disinfection performance and  loss mechanism 
of PDAcoated nanowiremodified electrodes
5.5.1Longterm disinfection performance of PDA
coated nanowiremodified electrodes
5.5.2PDAcoated nanowiremodified electrode loss 
analysis
5.5.3Analysis of the loss mechanism of PDAcoated 
nanowiremodified electrodes
5.6Summary of this chapter 
 
Chapter 6Altering current driven nanowireassisted electroporation 
disinfection with the enhanced electrode life
6.1Research background
6.2Experimental materials and methods
6.2.1Experimental reagents
6.2.2Fabrication of PDAcoated nanowiremodified 
electrodes
6.2.3Disinfection device construction using 
PDAcoated nanowiremodified 
electrodes
6.2.4Microbes and water samples used in 
experiments
6.2.5Electroporation disinfection for microbes 
using PDAcoated nanowiremodified 
electrodes
6.2.6Analysis of the disinfection efficiency using 
nanowiremodified electrodes for longterm 
operation
6.2.7Analysis of the loss mechanism of electrode 
during longterm operation
6.3Analysis of the disinfection efficiency of nanowire
assisted electroporation driven by a highfrequency AC 
power supply
6.4Longterm disinfection efficiency and loss mechanism of 
nanowireassisted electroporation powered by 
highfrequency AC
6.4.1Highfrequency ACpowered nanowireassisted 
electroporation for longterm disinfection
6.4.2Analysis of electrode loss in longterm operation 
when powered by highfrequency AC
6.5Summary of this chapter 
Chapter 7Nanowireassisted electroporation disinfection 
for reclaimed water
7.1Research background
7.2Experimental materials and methods
7.2.1Experimental reagents
7.2.2Fabrication of nanowiremodified electrodes
7.2.3Disinfection device construction using 
nanowiremodified electrodes
7.2.4Microbes and water samples used in 
experiments
7.2.5Electroporation disinfection for 
reclaimed water
7.3Effect of typical reclaimed water quality on 
nanowireassisted electroporation disinfection 
efficiency
7.3.1Effect of inorganic water parameters on the 
efficiency of DCpowered nanowireassisted 
electroporation disinfection
7.3.2Effect of inorganic water parameters 
on the efficiency of ACpowered nanowire
assisted electroporation disinfection
7.3.3Effect of organic matter on the disinfection 
efficiency of DCpowered nanowireassisted 
electroporation
7.3.4Effect of organic matter on the disinfection 
efficiency of ACpowered nanowireassisted 
electroporation
7.4Disinfection performance of nanowireassisted
 electroporation on reclaimed water
7.4.1Disinfection performance of nanowireassisted 
electroporation for secondary effluent from 
wastewater reclamation treatment plants
7.4.2Disinfection performance of nanowireassisted 
electroporation for the receiving water bodies of 
reclaimed water
7.5Summary of this chapter
Chapter 8Conclusions and perspectives
8.1Conclusions
8.2Perspectives
References
猜您喜欢

读书导航