数学
-
微积分系列[美] 戴维·M. 布雷苏(David M. Bressoud),[美]阿德里安·班纳 [日]神永正博 [日]小平邦彦,[美]William Dunham 著《微积分溯源:伟大思想的历程》 本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种更有趣、更易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的"小书"。本书适合中学以上水平的数学爱好者、学生和教师阅读。 《普林斯顿微积分读本(修订版)》本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《简单微积分 学校未教过的超简易入门技巧》本书为微积分入门科普读物,书中以微积分的"思考方法"为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需"轻松阅读"便可以理解微积分原理的入门书。 《微积分入门 修订版》微积分入门 为日本数学家小平邦彦晚年创作的微积分名作,有别于一般的微积分教科书,本书突出"严密"与"直观"的结合,重视数学中的"和谐"与"美感",讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。 《微积分的历程:从牛顿到勒贝格》本书介绍了十多位数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。《微积分的历程:从牛顿到勒贝格》兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
-
微分几何入门与广义相对论梁灿彬 周彬《上册》:本书(上册)共10章。前5章讲授微分几何入门知识,第6章以此为工具剖析狭义相对论,第7~10章介绍广义相对论的基本内容。本书强调低起点(大学物理系本科2~3年级水平),力求化难为易,深入浅出,为降低难度采取了多种措施。本书适用于物理系高年级本科生、研究生和物理工作者,特别是相对论研究者。不关心相对论而想学习近代微分几何的读者也可把本书前5章作为入门阶梯。《中册》:本书中册包含4章(第11-14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3 1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。本书适用于物理系高年级本科生、硕博士研究生和物理工作者,特别是相对论研究者。《下册》:本书下册包含两章(第15及16章)和三个附录(附录H,I,J)第15章讲授拉氏和哈氏理论,第16章介绍黑洞(热)力学,包括传统(稳态)黑洞热力学及其后续发展,特别是比较详细地讲解了(弱)孤立视界和动力学视界等重要概念,并对近代有关文献的许多公式给出了详细的推证,附录H讲授Noether定理的证明(包括用几何语言和坐标语言的证明)以及有关问题(例如正则能动张量),附录I讲授对理论物理工作者非常有用的主纤维丛和伴纤维丛,并着意于这些数学知识与物理应用之间的“架桥”工作。附录J介绍德西特时空和反德西特时空本册仍然贯彻上册深入浅出的写作风格,为降低难度采取了多种措施。本书适用于物理系高年级本科生、硕博上研究生和物理工作者,特别是相对论研究者。
-
代数几何初步李克正本书共分六个部分。引言部分通过几个典型问题对代数几何做了一些背景介绍;第1章解释了仿射代数几何与交换代数的关系;第2章介绍了射影代数几何的一些基本概念和方法;第3章从纤维丛的观点出发介绍了除子、相交数、切空间等;第4章阐述了代数曲线的一些方法、结果和应用;第5章对参量空间做一个初步介绍。
-
丛代数理论导引李方,黄敏本书介绍丛代数研究的理论基础和部分专题,其中,基础部分,畚重从代数方法和组合方法两方面介绍丛代数的结构;专题部分,介绍丛代数理论与数学各个方面(包括拓扑、几何、表示论、数论、矩阵论等)的联系。在一些专题的介绍M,指出了目前理论的研究进展和面临的问题。
-
矩阵之美耿修瑞《矩阵之美·基础篇》从线性变换的角度对矩阵的诸多重要概念进行了新的梳理。具体而言,第1章给出了矩阵的由来,指出矩阵是表达自然界中线性变换的最为自然的工具;第2章讲述了线性变换在一组基下的矩阵表达,从而引出矩阵相似的概念;第3章结合数的发展从特征分析的角度给出了一个矩阵可能包含的线性变换类型;第4章着重阐述若尔当标准形理论以及其重要的物理意义;第5章从线性变换的连续性角度,讨论了矩阵的任意次幂问题;第6章从线性变换的整体缩放角度,讲述了行列式的几何意义以及相关的代数性质;第7章和第8章的研究对象从单个的矩阵转到矩阵的集合,着重讲述了矩阵李群和矩阵李代数的相关概念及含义。
-
最优化方法张鹏本书介绍优化理论的基本概念和**化问题的基本求解方法,内容包括线性规划、整数规划、动态规划、图与网络算法、无约束优化、约束优化等。这些优化概念和方法从总体上可分为组合优化和连续优化两大类。本书的内容可看作是计算机类专业本科算法课程的延伸,尤其注重数学概念的应用和分析证明能力的训练。
-
不焦虑的数学系列贼叉(本名:朱晓睿)这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读者养成良好的自学、自练习惯,实现数学学习的轻松愉悦与进步。无论是家长、学生还是老师,在读完这三本书之后,都会有更深入的认识和体悟,在教育和学习中取得更加显著的效果。因此,《不焦虑的数学》、《不焦虑的几何》和《不焦虑的函数》不仅是提高数学成绩、缓解数学焦虑的有效指南,更是提升数学水平、塑造人才的优质读物。
-
数学 它的内容,方法和意义 第二卷王光寅 等本书是前苏联著名数学家为普及数学而撰写的一部名著,用极其通俗的语言介绍了数学各个分支的主要内容,历史发展及其在自然科学和工程技术中的应用。本书内容精练,由浅入深,只要具备高中数学知识、就能阅读。全书共20章,分三卷出版。每一章介绍一个分支,本卷是第二卷,内容包括:微分方程、变分法、复变函数、数论、概率论、函数逼近论、计算方法和计算机科学等内容。
-
数学 它的内容,方法和意义 第三卷石钟慈,邓健新本书是前苏联著名数学家为普及数学知识撰写的一部名著,用极其通俗的语言介绍了现代数学各个分支的主要内容。历史发展及其在自然科学和工程技术中的应用。本书内容精练深入浅出,只要具备高中的数学知识就能阅读。全书共20章,分三卷出版。每一章介绍一个数学支,本卷是第三卷,内容包括实变函数论、线性代数、抽象空间、拓扑学、泛函分析、群及其他代数系统。
-
数学 它的内容,方法和意义 第一卷[俄]A.D.亚历山大洛夫 等著;孙小礼,赵孟养 等本书是前苏联著名数学家为普及数学知识撰写的一部名著,用及其通俗的语言介绍了现代数学各个分支的内容,历史发展及其在自然科学和工程技术中的应用。本书内容精炼,由浅入深,只要具备高中数学知识就可阅读。全书共20章,分三卷出版。每一章介绍数学的一个分支,第一卷的内容包括数学概观、数学分析、解析几何和代数。