数学
-
世界著名几何经典著作钩沉刘培杰数学工作室本书共分5章,分别为:第1章平面坐标和直线;第2章二次曲线;第3章二次曲线的一般方程;第4章空间直线与平面;第5章二次曲面.本书适合大学生、中学生及平面解析几何爱好者参考阅读.
-
平面几何[俄]沙雷金 著; 郑元禄 译本书共分四章,分别为基本的几何学事实与定理,计算题,精选的平面儿何的习题与定理,形形色色的习题,答案与解法,内容全面,讲解细致。本书适合数学爱好者阅读和收藏。
-
测度论基础与高等概率论袁德美,王学军第1-12章是《测度论基础与高等概率论》上册,其中第1,2章是预备知识,第3-12章是测度论基础。本书强调背景知识的深刻描述、基本概念的自然引入、科学素养的悄然渗透,从谋篇布局到板块转换,直至例题编制都精雕细琢,从章节引言到问题切人,直至定义、引理、命题、定理前的导语都字斟句酌。为避免初学者从初等概率论到高等概率论因跃迁幅度过大而产生困惑,在理论阐述方面力求小坡度爬行、稳扎稳打、拾级而上。尽量在本书范围内自成体系,扫除读者手中缺少相关资料带来的苦恼。另外,注重各板块知识的内在联系,留意高等概率论发展史上有深刻影响人物的介绍和历史线索的呈现。
-
Tukey统计学讲义(美)约翰·图基(John W. Tukey)本书是探索性数据分析(Exploratory Data Analysis, EDA)提出者、“数据科学之父” 约翰·图基(John Tukey)的经典著作,书中尤其强调对数据分析采取更灵活态度以及仔细探索数据以了解其中可能包含哪些结构和信息的重要性。探索性数据分析是现代数据科学的鼻祖,建立了数据科学的关键基础。
-
环拓扑Victor M. Buchstaber本书聚焦于环拓扑这一全新数学领域,它作为等变拓扑、代数几何与辛几何、组合学和交换代数的边缘交叉学科于 20 世纪 90 年代末兴起,随后迅速发展成为一个非常活跃的领域,与其他数学领域有着许多密切联系,并持续吸引着来自不同领域的专家。环拓扑中的关键角色是矩-角(moment-angle)流形,它是一类以组合术语定义、具有环面作用的流形。矩-角流形的构造通过准环面(quasitoric)流形的概念与环簇的组合几何和代数几何相关联。人们在矩-角流形上发现了显著的几何结构,这使得辛几何、Lagrange 几何和非 K?hler 复几何的古典与现代领域产生重要关联。矩-角复形和多面体乘积的相关分类构造为同伦拓扑的许多基本构造提供了通用框架。多面体乘积的研究已经发展成为同伦理论的一个独立主题。而对环面作用的新视角也促进了复配边等代数拓扑经典领域的发展。本书包含许多未解决的问题,适合对将所有相关学科联系起来的新思想感兴趣的专家,以及准备进入这一优美的全新领域的研究生和年轻研究人员研读和学习。
-
世界数学奥林匹克经典徐家鹄 著内容简介奥数并不是数学解题技术的集合,而应是增进数学教育的一个体系,这是作者一直以来的一个理念。一个优秀学生要能灵活并严谨地思考问题。逻辑推理能力只是一个基本功,还要有能从直觉出发直击问题核心的能力。要能通过预测、归纳、想象、构造和设计来实现自己的创新性想法,并能在具体与抽象之间随意切换。这些都是本书作者希望通过奥数训练来让学生提升的能力。作者原是复旦大学数学系教授,后移居新加坡。这套书是根据作者在新加坡维多利亚初级学院、华侨中学、南洋女中、德明政府中学等名校教授了几十年的数学奥林匹克培训课程讲义改编而成的。其范围和深度不仅涵盖和超出了通常的数学教学大纲,而且还介绍了现代数学中的各种概念和方法。整套教程共4卷,初中、高中各2卷,每一卷包含15讲,每讲都以概念、理论和方法为核心,再举8―10个例题来进一步解释和丰富这些核心思想并表明它们的应用,每一讲还留有适当数量的题目以供读者练习和测试,这些题目选自中国、美国、俄罗斯、德国、英国、爱尔兰、罗马尼亚、匈牙利、保加利亚、波兰、白俄罗斯、波罗的海地区、摩尔多瓦、克罗地亚、斯洛文尼亚、希腊、意大利、巴尔干半岛、土耳其、新加坡、日本、韩国、越南、泰国、印度、伊朗、澳大利亚、新西兰、加拿大、哥伦比亚等世界各地的数学奥林匹克竞赛真题。本套书可作为数学奥数课程的教材,也可供优秀学生自学使用,或作为相关教师和研究人员的参考书。本套书的另一大特点是用英文写成,帮助读者了解数学研究是如何去专业表达的,与国际接轨,助力更多的年轻读者在未来走上科学研究之路。
-
折纸中的几何练习[印]T.桑达拉.罗 著通过折纸活动,分析留在纸张上的折痕,我们能够揭示出大量几何对象的性质,如轴对称、中心对称、全等、相似形等.折纸过程还能够体现出许多几何概念和规律.本书通过折纸活动介绍了多边形、级数、圆锥曲线、混合曲线等相关知识,适合中小学师生、大学师生及数学爱好者参考阅读.
-
概率论Daniel W. Stroock本书涵盖了现代概率论的基础知识,包含五部分内容。部分是有限和可数样本空间上的概率理论;第二部分是测度理论的简明介绍;第三部分是概率理论的一些初步应用,包括独立性和条件期望;第四部分讨论了高斯随机变量、马尔可夫链和一些连续参数过程,包括布朗运动;第五部分讨论了鞅,包括离散和连续参数过程。本书是对概率论和研究概率论所需的测度理论的全面介绍。本书可供专业研究人员、讲授研究生阶段概率课程的教师以及在工作和学习中需要任何概率知识的读者阅读参考。
-
Tukey统计学讲义(美)弗雷德里克·莫斯特勒(Frederick Mosteller)等本书是统计领域无可替代的经典教材,由两位美国国家科学院院士师徒约翰·图基(John Tukey)和弗雷德里克·莫斯特勒(Frederick Mosteller)共同撰写。书中既强调进行有效数据分析所需的一系列哲学态度,也传授能使其展现力量的实用技术。这本书会促使学生思考,并且会教学生如何思考手头的数据,然后问出正确的问题并选择适当的技术去阐释这些数据。
-
分析学教程 第3卷 测度与积分理论 复变量的复值函数[英]尼尔斯.雅各布本书是分析学课程著作的第三卷,涵盖了每个数学家都必须要研究的两个主题,讨论了勒贝格的积分理论和实变量的实值函数理论中的第一个结果,介绍了一个复变量的复值函数理论——习惯上简称为“函数理论”。实值函数、傅里叶分析、函数分析、动力系统理论、偏微分方程或变分法的高级理论等也都在本书中有所提及。