数学
-
算法数论Algorithmic number theoryClaus Fieker 著This book constitutes the refereed proceedings of the 5th International Algorithmic Number Theory Symposium, ANTS-V, held in Sydney, Australia, in July 2002.The 34 revised full papers presented together with 5 invited papers have gone through a thorough round of reviewing, selection and revision. The papers are organized in topical sections on number theory, arithmetic geometry, elliptic curves and CM, point counting, cryptography, function fields, discrete logarithms and factoring, Groebner bases, and complexity. -
佩特里网应用与理论2002/会议录Javier Esparza 著This book constitutes the refereed proceedings of the 23rd International Conference on Application and Theory of Petri Nets, ICATPN 2002, held in Adelaide, Australia, in June 2002.The 18 regular papers and one tool presentation presented together with six invited paper were carefully reviewed and selected from 45 submissions. All current issues on research and development of Petri nets are addressed, in particular concurrent systems analysis, model validation, business process management, reactive systems, workflow processes, wireless transaction protocols. -
应用并行计算Juha Fagerholm 著This book constitutes the refereed proceedings of the 6th International Conference on Applied Parallel Computing, PARA 2002, held in Espoo, Finland, in June 2002.The 50 revised full papers presented together with nine keynote lectures were carefully reviewed and selected for inclusion in the proceedings. The papers are organized in topical sections on data mining and knowledge discovery, parallel program development, practical experience in parallel computing, computer science, numerical algorithms with hierarchical memory optimization, numerical methods and algorithms, cluster computing, grid and network technologies, and physics and applications. -
计算与组合数学 Computing and combinatoricsOscar H. Ibarra 著This book constitutes the refereed proceedings of the 8th Annual International Computing and Combinatorics Conference, COCOON 2002, held in Singapore in August 2002.The 60 revised full papers presented together with three invited contributions were carefully reviewed and selected from 106 submissions. The papers are organized in topical sections on complexity theory, discrete algorithms, computational biology and learning theory, radio networks, automata and formal languages, Internet networks, computational geometry, combinatorial optimization, and quantum computing. -
立方形递归网络王德强《立方形递归网络》以数学为基础,系统研究互连网络,特别是超立方体网络的拓扑性质、网络参数、容错性能、通信算法等。内容主要包括:互连网络的拓扑与互连函数,立方形递归网络,立方形递归网络的参数与拓扑特性,立方形递归网络上的算法等。《立方形递归网络》注重为互连网络的研究提供思路和方法,具有一定的学术价值和实践指导意义。 -
抽样(美)Sharon L.Lohr著暂缺简介... -
纳西古籍中的星球、历法、黑白大战和士华著这是一部东巴文化研究的论著。这是一部探索和解读东巴经典——英雄史诗《董埃术埃》的专著。用二十多万字的一本著作来论述、解读一部东巴经典,这在东巴文化的研究史上是一次创举,是使人耳目一新的一次开创性研究。 -
训练思维的数学趣题陶臣铨,毛澍芬编著当今社会,对高素质人才的需求日益迫切。相应地,在学校中,注重素质教育,已成为人们的共识,在社会上,不断提高自身素质,已成为每位走向成功或更大成功人士的追求。一个人的素质有多方面,但数学素质,即智力素质,无疑是一个十分重要的方面。我们在学校里学的数学,作为一门学科,总包括两个方面:一是知识,一是能力。能力,即数学思维能力,与智力素质有着较为直接的联系。在学校里,进行数学思维训练的手段是做数学习题,这些习题以数学知识为材料,这当然是很自然合理的,因为教育的目的之一就是传授知识。但仅从训练思维的角度出发,还可以有一种以五光十色的社会生活为材料的数学趣题。这种数学趣题,并不涉及较深的数学知识,却要求有较强的思维能力,用来在课余或业余进行思维训练,是再恰当不过了。《数学思维游戏》中用于解题的数学知识一般不超出初中范围,题目的编排大致上是从易到难。当然,难易不是绝对的,况且有些题目因其中故事内容的关系,难易顺序也有颠倒。答案中有些内容比较深,可以先放一放,日后再加琢磨。一旦弄懂,必定其乐无穷,说不定还会由此把你引入数学殿堂呢! -
有限域上典型群的几何学Wan ZhexianThis monograph is a comprehensive survey of the results obtained on the geometry of classical groups over finite fields mainly in the 1960s and early 1990s.For the convenience of the readers I start with the affine geometry and projective geometry over finite fields in Chapters 1 and 2, respectively. Among other things, the affine classification of quadrics is included in Chapter 1, and conics and ovals are studied in detail in Chapter 2. From Chapter 3 and onwards the geometries of symplectic, pseudo-symplectic, unitary, and orthogonal groups are studied in succession. The book ends with two appendices, on the axiomatic projective geometry, and on polar spaces and finite generalized quadrangles, respectively. Now I shall say a few words about the problems we are going to study in Chapters 3-7, and in addition give some historical remarks. -
突破维数障碍(美)史蒂夫·巴特森(Steve Batterson)著;邝仲平译斯梅尔是1966年菲尔兹数学大奖得主,他是一位有着独特人生经历的当代数学大师。他在数学的许多领域中做出了卓越成就,例如首先证明将球体从内向外翻转在理论上是可能的,提出了混沌概念的先声——斯梅尔马蹄等等。斯梅尔首先突破了维数障碍,在高维宠加莱猜想上取得重大进展,证明一个六维的世界有可能比一个三维世界更为简单。不仅如此,斯梅尔还是一名发起了旨在终结越南战争的反战运动的狐胆骑侠,并与美国的科学管理机构进行过维护学术自由的不懈斗争。斯梅尔有丰富的业余爱好,不但被公认为顶级的矿石收藏家,而且还热衷于摄影、航海、登山。本书由一位十分熟悉他的数学家撰写,不但以极其通俗的语言,介绍了斯梅尔数学成就的迷人之处,更令我们看到了一个特立独行、勇于追求、执着探索的数学家形象。...
