数学
-
线性代数学习引导喻德生《高等学校教学用书:线性代数学习引导(第2版)》参照同工、管、经类《线性代数》的基本内容,分6章系统地阐述了线性代数教与学的问题,每章均由教学目标、内容提要、学习引导和能力测试四部分组成。教学目标分知识、领会、运用、分析综合四个能力层次,具体地阐述了线性代数教学的基本要求,能使学生明确学习目标,增强学习的主动性和目的性;内容提要用树形图表的方式简明扼要地总结、概括每章的内容,能使学生掌握知识间的联系,形成牢固的知识结构;学习引导围绕教材的重点、难点,论述数学思想、数学方法、学习方法、解题方法等方面的内容,能使学生开阔视野,加深知识的理解,从更高的层次把握所学的知识;能力测试精心编选了测试题,包括判断、填空、选择、解答和证明等题型涉及知识、领会、运用、分析综合各个能力层次的问题,每个题前都标明了正确解答该问题所要求的能力水平;书末附有能力测试题答案,以便学生巩固练习,进行能力测试及评价,明确努力的方向。《高等学校教学用书:线性代数学习引导(第2版)》可作为工科线性代数课程的教学参考书,也可以作为报考硕士研究生的复习材料。 -
数理逻辑(德国)(Ebbinghaus H.D.)艾宾浩斯What is a mathematical proof? How can proofs be justified? Are there limitations to provability? To what extent can machines carry out mathematical proofs? Only in this century has there been success in obtaining substantial and satisfactory answers. The present book contains a systematic discussion of these results. The investigations are centered around first-order logic. Our first goal is' Godel's completeness theorem, which shows that the consequence relation coincides with formal provability: By means of a calculus consisting of simple formal inference rules, one can obtain all consequences of a given axiom system (and in particular, imitate all mathematical proofs) -
向量微积分(英语)(Mattews P.C.)马修斯Vector calculus is the fundamental language of mathematical physics. It provides a way to describe physical quantities in three-dimensional space and the way in which these quantities vary. Many topics in the physical sciences can be analysed mathematically using the techniques of vector calculus. These topics include fluid dynamics, solid mechanics and electromagnetism, all of which involve a description of vector and scalar quantities in three dimensions. This book assumes no previous knowledge of vectors. However, it is assumed that the reader has a knowledge of basic calculus, including differentiation, integration and partial differentiation. Some knowledge of linear algebra is also required, particularly the concepts of matrices and determinants. -
现代分析教程(英语)(Whittaker E.T.)维塔克ADVANTAGE has been taken of the prearation of the fourth edition of this work to add a few additional referens and to make a number of corrections of minor errors.Our thanks are bue to a number of our readers for pointing out errors and misprints,and in particular we are grateful to Mr E.T.Copson,Lecturer in mathematics in the University Edinburgh,for the trouble which he has taken in supplying us with a somewhat lenthy list. -
朴素集合论(美国)( Halmos P.R.)哈莫斯Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. This book contains my answer to that question. The purpose of the book is to tell the beginning student of advanced mathematics the basic settheoretic facts of life, and to do so with the minimum of philosophical discourse and logical formalism. The point of view throughout is that of a prospective mathematician anxious to study groups, or integrals, or manifolds. From this point of view the concepts and methods of this book are merely some of the standard mathematical tools; the expert specialist will find nothing new here。 -
黎曼几何(葡萄牙)(Carmo M.p.)卡莫The object of this book is to familiarize the reader with the basic language of and some fundamental theorems in Riemannian Geometry. To avoid referring to previous knowledge of differentiable manifolds, we include Chapter 0, which contains those concepts and results on differentiable manifolds which are used in an essential way in the rest of the book。The first four chapters of the book present the basic concepts of Riemannian Geometry (Riemannian metrics, Riemannian connections, geodesics and curvature). A good part of the study of Riemannian Geometry consists of understanding the relationship between geodesics and curvature. Jacobi fields, an essential tool for this understanding, are introduced in Chapter 5. In Chapter 6 we introduce the second fundamental form associated with an isometric immersion, and prove a generalization of the Theorem Egregium of Gauss. This allows us to relate the notion of curvature in Riemannian manifolds to the classical concept of Gaussian curvature for surfaces。 -
代数变形蔡小雄《高中数学竞赛专题讲座》(第一辑)12种出版以来,反响强烈,深受广大读者喜爱,并收到了大量反馈信息。很多读者,包括一线竞赛辅导的教师和竞赛研究人员提出了许多宝贵的建设性意见,希望我们再组织出版一套以解题方法和解题策略为主的丛书。为了满足广大读者的需求,我们在全国范围‘内组织优秀的数学奥林匹克教练编写了《高中数学竞赛专题讲座》(第二辑)共8种:《图论方法》、《周期函数与周期数列》、《代数变形》、《极值问题》、《染色与染色方法》、《递推与递推方法》、《组合构造》;考虑到配套,把’第一辑中《数学结构思想及解题方法》放在第二辑出版。丛书的起点是高中阶段学生必须掌握的数学基本知识和全国数学竞赛大纲要求的一些基本的数学思想、方法,凡是对数学爱好的高中学生都有能力阅读。丛书的特点是:1.充分吸收了世界各地的优秀数学竞赛试题,通过对典型例题的解剖,传授数学思想方法,侧重培养学生的逻辑思维能力,不唯解题而解题;2.本着少而精的原则选择材料,不搞题海战术,不追求大而全,而是以点带面,举一反三;3.以数学修养和能力培养为立意,通过深刻剖析问题的数学背景,挖掘数学内涵,培养学生的数学品格和解决实际问题的能力;4.在注重基础知识训练同时,有适当程度的拨高,对参加冬令营甚至是更高层次的竞赛都有相当的指导作用和参考价值。 -
概率论与数理统计练习与测试南京工业大学应用数学系 著《概率论与数理统计练习与测试》分“同步练习”、“综合练习”、“模拟测试”三个部分。其中“同步练习”包含各章学生应完成的作业,起到一个检查督促的作用;“综合练习”则提供了一定数量的习题,可帮助学生系统复习所学知识,提高解题能力。“模拟测试”提供了4套模拟试卷,供学生自我检查。书末提供了参考答案。 -
计量经济学实验基础王升《21世纪经济学教材:计量经济学实验基础》计量经济学实验是经济管理类本科生和研究生的秘修课或公共专业基础课的重要组成部分。《21世纪经济学教材:计量经济学实验基础》是专门为这门课程撰写的教材,共由7章组成:第1章为回归分析实验,第2章为虚拟变量模型回归实验,第3章为Logistic回归实验,第4章为共线性问题实验,第5章为异方差问题实验,第6章为自相关问题实验,第7章为线性时间序列回归分析实验。 -
集值映象与微分包含秦松喜《集值映象与微分包含》内容主要包括:集值分析基础和微分包含理论两个板块。前者包括集值映的连续性理论和选取理论,是后者存在的基础;后者是微分方程理论的推广,主要包括微分包含解的存性理论与定性理论,并对极大单词调的微分包含理论和应用做了比较详细的介绍.两个板块都建立在泛函分析的基础之上,要求读者掌握点集拓扑学和泛函分析基础理论.为了让数学与应用数学专业高年级学生也能读懂《集值映象与微分包含》的基本内容,作者特意将学生在本科阶段难以学到或难以学好的上、下半连续,弱收敛和紧(或弱紧)致性等部分内容做了归纳和加深,这些内容连同其他必备知识组成第一章.不管是本科还在研究生,要读懂《集值映象与微分包含》都得先仔细读好这一章。
