数学
-
Vlasov-Boltzmann 型方程的数学理论李海梁,钟明溁《Vlasov-Boltzmann型方程的数学理论》主要研究两类带外力场的Boltzmann方程,包括Vlasov-Poisson-Boltzmann(VPB)方程和Vlasov-Maxwell-Boltzmann(VMB)方程的谱分析与整体强解的渐近行为。主要内容包括:第1章介绍**Boltzmann方程的谱分析,并且利用谱分析建立Boltzmann方程整体强解的存在性和*优衰减速度估计;第2章介绍VPB方程的谱分析、能量估计和整体强解的存在性和*优衰减率;第3章至第4章基于谱分析研究VPB方程的格林函数和整体强解的时空点态估计,以及扩散极限的收敛性和收敛速度估计;第5章介绍VMB方程的谱分析、能量估计和整体强解的存在性和*优衰减率。《Vlasov-Boltzmann型方程的数学理论》*突出的特点是建立了带外力场的Boltzmann方程的谱分析,并且把谱分析方法应用到研究带外力场的Boltzmann方程整体强解的渐近行为,包括解的*优时间衰减率、格林函数的点态估计和流体动力学极限。 -
数学秘境周生祥《数学秘境》是一本围绕数学基本概念、原理展开的小说集,把数学要素放在“新城小学”的主场景里,以生动的人物形象,巧妙交织的故事作为载体很好地展示出数学的要素,清晰地解读着复杂的数学原理,用生花之笔让本来显得枯燥的数学原理,显现在生动易懂的文字之中,启发着学生们甚至成人学数习数的兴趣。 -
三角形张娟萍三角形是几何图形中最基本的图形,是研究其他图形的先行组织者,是衔接图形与代数知识的支架,被称为古希腊几何学研究的主角。三角形以它独特的、神奇的魅力,搭建了几何学习的重要桥梁。本书将帮助学生直观理解和掌握三角形,经历得到三角形的基本性质,形成几何直观和推理能力,发展直观想象、逻辑推理、数学抽象等核心素养;并基于三角形的研究路径,研究三角形的定义、表示、画法、元素、性质、判定、特殊三角形、三角形关系、三角形性质应用,深度迁移得到几何图形探究的方法。本书将在双新的视觉下,循着三角形的探究学习之路,由三角形的学习开启几何探索的大门! -
双曲守恒律数值方法概论袁礼,于海军《双*守恒律数值方法概论》是为中国科学院大学计算数学专业硕士研究生专业课程“微分方程数值解Ⅱ”编写的教科书。主要以一维问题为例,介绍双*守恒律方程数值方法中较成熟并得到广泛应用的一些方法。《双*守恒律数值方法概论》内容包括有限差分法的基础知识、双*守恒律方程的数学性质、**有限体积和差分格式、高分辨率总变差减少格式、高阶基本无振荡格式和加权基本无振荡格式,以及间断有限元方法。*后还介绍了将守恒律数值方法应用于实际问题时所需的贴体结构网格生成技术。 -
大卫·希尔伯特王前大卫·希尔伯特是20世纪上半叶国际数学界的一位领袖人物,他于1900年提出的23个数学问题,激发了整个数学界的想象力,造就了20世纪一大批著名的数学家。作者除了介绍希尔伯特在数学上的探索,还穿插了若干深度的哲学思辨性内容,而且对23个数学问题做了详尽的交待,是一部重理论探索又有深度的英雄纪录片。旨在从直观、直觉的角度呈现几何学的基本概念和理论。这本书强调通过几何图形和直观想象来理解和解决数学问题,而不是依赖复杂的分析和抽象的推理。希尔伯特希望通过这种方式,使读者能够更深入地理解和欣赏几何学的美和深度。 -
张奠宙文集第一卷《张奠宙文集》 编辑委员会本书为《张奠宙文集》第一卷,汇集了张奠宙先生毕生的在数学研究与数学思想领域发表的科研和学术成果,共分三部分。第一部分收集了从1956年到1994年张先生发表的数学学术论文,涉及复变函数、调和分析、实变函数、混沌理论和泛函分析各领域,展现了张先生从研究生开始的数学探索的巨大潜能。第二部分是张先生领衔撰写的科研专著《线性算子组的联合谱》,该书解决了当时算子谱论对联合谱的各个重大问题。如亚正常算子组、可分解算子组、紧算子组和fredholm算子组的联合谱和本质联合谱。第三部分是张先生与朱成杰合作的著作《现代数学思想的讲话》中主要由张先生撰写的内容。其中阐明了数学研究中“数学思想”是数学的核心的精辟结论。张先生用数学逻辑语言,结合中外数学发展史和当今数学的热门话题,讲述数学中的关系学、迭代法、对策论、信息论、控制论、系统论等,在读者面前展现了一个包罗万象、精彩纷呈的数学世界。 -
数学分析原理Г. М. 菲赫金哥尔茨 著, 吴亲仁、陆秀丽、丁寿田 译本书是Г. М.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。本书针对大学数学系一、二年级的分析课程,因此分两卷出版。第一卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、不定积分、定积分、积分学的几何应用及力学应用、微分学的一些几何应用,书末专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数,书后附有“数学分析进一步发展概况”的附录。本书可作为各级各类高等学校的数学分析与高等数学课程的教学参考书,是数学分析教师极好的案头用书。 -
张奠宙文集 第二卷《张奠宙文集》 编辑委员会本书为《张奠宙文集》第二卷,汇集了张奠宙先生写作(含合作)的百余篇文章和传记,分为三部分:第一部分是现代数学史,包括20世纪数学史、中国现代数学史、华人数理名家研究、中国数学教育史和数学家传记等;第二部分是数学文化与数学普及,包括数学文化、数学欣赏和数学普及三类文章;第三部分是杂论,包括中国科学史、学术媒介与学术单位、人物回忆等内容。把数学史、数学文化研究,同数学教育、数学普及工作结合起来,为数学教育而研究数学史、数学文化,正是张奠宙先生重要的数学史治学思想和数学教育思想。 -
平面代数曲线导引Keith Kendig本书是对平面代数曲线的一个非正式且通俗易懂的介绍,也是代数几何的一个自然切入点。这本书有一个统一的主题:给曲线足够的生存空间,美丽的定理就会随之而来。这本书通过具体的例子和图片介绍抽象的概念,为读者提供了对主题的坚实直觉,同时保持了阐述的简单易懂。它可以作为平面代数曲线本科课程的教材,也可以作为研究生代数几何的配套教材。数学背景有限的人可以阅读这本书。这是因为对于数学之外的人来说,对代数几何的入门需求越来越大,代数几何在从生物学到化学、机器人到密码学等领域发挥着越来越大的作用。 -
数学哲学导论Stephan K?rner 著,胡俊美 译本书概述了柏拉图、亚里士多德、莱布尼茨和康德的观点,着重探讨纯粹数学和应用数学的一般结构与基础。对于三个主流的现代数学哲学学派——形式主义学派、逻辑主义学派和直觉主义学派,作者分别从阐述性和评论性的角度各用两章的篇幅进行了分析。他在批判性地审视了每个哲学学派的命题和理论之后,提出了自己关于数学理论、经验材料和哲学预设之间关系的新立场。 《形而上学评论》(The Review of Metaphysics)赞誉此书是“一部清晰且鼓舞人心的著作,它用最少的专业性术语使准确性和深奥性浑然一体”。这部非专业的导论内容简洁,涉猎广泛,适合相关领域专业人士和学生阅读,同时也会吸引对于与纯粹数学和应用数学相交叉的哲学问题感兴趣的读者。
