数学
-
不可压缩 Navier-Stokes 方程的吸引子问题韩丕功,刘朝霞无限维耗散动力系统是数学的一个重要分支,与其他数学分支均有广泛的联系,而且在自然科学与工程技术中有广泛的应用。《不可压缩Navier-Stokes方程的吸引子问题》主要介绍无限维耗散动力系统并应用于不可压缩Navier-Stokes方程。主要内容包括无限维系统的全局吸引子、指数吸引子和惯性流形的基本概念、存在性、构造原理和稳定性,Lyapunov指数和吸引子的Hausdorff维数、分形维数等**结论。所用的研究方法主要是算子半群理论、球覆盖定理、弱收敛方法和Fiber吸引压缩定理等。这些研究内容和研究方法可以为读者进一步学习、研究无限维耗散动力系统做必要的理论准备。《不可压缩Navier-Stokes方程的吸引子问题》的主要特点是介绍基本概念和重要理论的来源和背景,强调培养读者运用数学方法解决问题的能力,注重可读性,叙述深入浅出、涉及面广,有利于读者进一步学习。 -
数学秘境周生祥《数学秘境》是一本围绕数学基本概念、原理展开的小说集,把数学要素放在“新城小学”的主场景里,以生动的人物形象,巧妙交织的故事作为载体很好地展示出数学的要素,清晰地解读着复杂的数学原理,用生花之笔让本来显得枯燥的数学原理,显现在生动易懂的文字之中,启发着学生们甚至成人学数习数的兴趣。 -
数学分析原理Г. М. 菲赫金哥尔茨 著, 吴亲仁、陆秀丽、丁寿田 译本书是Г. М.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。本书针对大学数学系一、二年级的分析课程,因此分两卷出版。第一卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、不定积分、定积分、积分学的几何应用及力学应用、微分学的一些几何应用,书末专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数,书后附有“数学分析进一步发展概况”的附录。本书可作为各级各类高等学校的数学分析与高等数学课程的教学参考书,是数学分析教师极好的案头用书。 -
大卫·希尔伯特王前大卫·希尔伯特是20世纪上半叶国际数学界的一位领袖人物,他于1900年提出的23个数学问题,激发了整个数学界的想象力,造就了20世纪一大批著名的数学家。作者除了介绍希尔伯特在数学上的探索,还穿插了若干深度的哲学思辨性内容,而且对23个数学问题做了详尽的交待,是一部重理论探索又有深度的英雄纪录片。旨在从直观、直觉的角度呈现几何学的基本概念和理论。这本书强调通过几何图形和直观想象来理解和解决数学问题,而不是依赖复杂的分析和抽象的推理。希尔伯特希望通过这种方式,使读者能够更深入地理解和欣赏几何学的美和深度。 -
平面代数曲线导引Keith Kendig本书是对平面代数曲线的一个非正式且通俗易懂的介绍,也是代数几何的一个自然切入点。这本书有一个统一的主题:给曲线足够的生存空间,美丽的定理就会随之而来。这本书通过具体的例子和图片介绍抽象的概念,为读者提供了对主题的坚实直觉,同时保持了阐述的简单易懂。它可以作为平面代数曲线本科课程的教材,也可以作为研究生代数几何的配套教材。数学背景有限的人可以阅读这本书。这是因为对于数学之外的人来说,对代数几何的入门需求越来越大,代数几何在从生物学到化学、机器人到密码学等领域发挥着越来越大的作用。 -
张奠宙文集第一卷《张奠宙文集》 编辑委员会本书为《张奠宙文集》第一卷,汇集了张奠宙先生毕生的在数学研究与数学思想领域发表的科研和学术成果,共分三部分。第一部分收集了从1956年到1994年张先生发表的数学学术论文,涉及复变函数、调和分析、实变函数、混沌理论和泛函分析各领域,展现了张先生从研究生开始的数学探索的巨大潜能。第二部分是张先生领衔撰写的科研专著《线性算子组的联合谱》,该书解决了当时算子谱论对联合谱的各个重大问题。如亚正常算子组、可分解算子组、紧算子组和fredholm算子组的联合谱和本质联合谱。第三部分是张先生与朱成杰合作的著作《现代数学思想的讲话》中主要由张先生撰写的内容。其中阐明了数学研究中“数学思想”是数学的核心的精辟结论。张先生用数学逻辑语言,结合中外数学发展史和当今数学的热门话题,讲述数学中的关系学、迭代法、对策论、信息论、控制论、系统论等,在读者面前展现了一个包罗万象、精彩纷呈的数学世界。 -
非线性泛函分析专题Louis Nirenberg,Ralph A. Artino本书发展了处理非线性常微分方程和偏微分方程的拓扑和解析方法。本书适合对泛函分析感兴趣的研究生和数学研究人员阅读参考。Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book has served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references.Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible branching of solutions as parameters vary), including the proof of Rabinowitz's global bifurcation theorem. Stability of the branches is also studied. The book concludes with a presentation of some generalized implicit function theorems of Nash-Moser type with applications to Kolmogorov-Arnold-Moser theory and to conjugacy problems.After more than 20 years, this book continues to be an excellent graduate level textbook and a useful supplementary course text. -
双曲流形上的测地流刘飞 王方测地流是现代动力系统理论体系中最重要的研究课题之一,其动力学理论已发展成为融合黎曼几何、芬斯勒几何、微分动力系统、哈密顿系统、辛几何、拓扑学等多个领域的前沿交叉学科。本书着重介绍了双曲流形的几何性质;在此基础上,研究了双曲流形上测地流的一致双曲性、拓扑动力学和遍历性等动力学性质。在内容上,本书十分强调几何直观,兼顾表述的启发性和论证的严密性,力求揭示概念和定理的数学本质。本书可供高等院校数学及相关专业的广大师生教学参考,亦适合作为硕士生和博士生一学期课程或讨论班的参考书。 -
整数上的Ramsey理论Bruce M. Landman,Aaron RobertsonRamsey理论是对数学对象的结构的研究,这本创新的书提供了Ramsey理论对整数的第一个有凝聚力的研究。它可能包含了这个蓬勃发展的学科中已解决和未解决问题的最实质性的说明。本书适合对组合学、数论和Ramsey理论感兴趣的研究生和数学研究人员阅读参考。Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems.For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an “inequality” version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erd?s-Ginzberg-Ziv theorem, and the number of arithmetic progressions under arbitrary colorings. -
数学分析[俄] B. A. 卓里奇 著,李植 译本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中最有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第一卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
