数学
-
拓扑规范场论段一士 著《兰州大学名师名作旧稿影存》是兰州大学百年来具有深厚学术造诣、享有崇高学术声誉的大师级教授、学者所存旧稿的影印版系列丛书。本次推出的是著名理论物理学家段一士教授的讲义手稿6种,《拓扑规范场论/段一士手稿》是其中之一。本讲义包括四部分内容:拓扑量子力学、φ映射拓扑场论、拓扑规范场论和规范势内部结构。主要讲了SO(2)、U(1)、SU(2)、SU(N)、SO(N)段一士规范势可分解理论及其相应的φ-映射拓扑流理论,以此为基础,深入研究了磁单极、超流、超导、霍尔效应、宇宙弦、London方程、Gauss-Bonnet-C。 -
数学阅读的教与学宋君 著数学课外阅读是学生生活的需要,成长的需要,更多的是人生的需要。通过数学课外阅读,不断丰富学生认知,透过文字找到背后的数学思想,领学生智慧地思考。《数学阅读的教与学》明晰数学课外阅读的意义,梳理数学课外阅读的6大策略、数学阅读的7个主张。数学课外阅读不仅运用阅读锻炼了眼、口、手、脑等多种感官系统,还激发了学生对于数学的强烈好奇心和求知欲,提升了学生的核心素养。《数学阅读的教与学》会帮助教师和学生一起踏上数学阅读快车,在数学课外阅读中一起感受成长的快乐,一起品味数学阅读的魅力。 -
高考数学全国卷六道解答题常考题型解题诀窍赵南平 著《高考数学全国卷六道解答题常考题型解题诀窍:理科(套装上下册)》包括八章共39讲内容,各章均分为“高考要求”“考点知识汇总”“高考题型及解题诀窍”“解法指导”“典型范例”“走进考场”“参考解答”等内容,对高考数学中解答题的知识点进行深度挖掘,并深化提高,以提升考生的解题能力,使考生在高考中稳操胜券。《高考数学全国卷六道解答题常考题型解题诀窍:理科(套装上下册)》既可作为学生的备考参考书,也可供教师教学时参考。 -
天才中小学生智力测验题刘培杰数学工作室 编全书囊括了中小学生常见的智力测验题,也包括很多难度较高的问题。书中的问题很有趣,解题思路多样。《天才中小学生智力测验题(第三卷)》包括智力测验、趣味数独、趣味习题和英语阅读四大部分。《天才中小学生智力测验题(第三卷)》适合中小学生及数学爱好者阅读。 -
美国高中数学竞赛-AMC10准备陈茧,陈三国,陈永成 编本套书共6卷,给出了美国高中数学竞赛的相关试题及解答,可为备战AMC10做准备,内容涵盖了几乎所有的AMC10的常考知识和解题技巧,每卷都给出了相关实例、大量练习题和所有练习题的详细解答,第6卷还给出了相关的模拟试题和详细解答。《美国高中数学竞赛-AMC10准备(英文版 套装全6卷)》可供准备参加数学竞赛的学生或数学爱好者参考阅读。 -
线性代数学习指导胡建华,程林凤,魏琦英 著《线性代数学习指导》是学习线性代数的辅导书,与《线性代数学习指导》作者编写的《线性代数》(高等教育出版社,2013)配套使用。《线性代数学习指导》共分六章,内容包括线性方程组、矩阵、行列式及其应用、向量空间、特征值与特征向量、实对称矩阵与实二次型,同时每章配有内容提要、典型例题,章末还有综合例题解析及总习题解答。《线性代数学习指导》可作为高等学校非数学类各专业本科生同步学习、复习应试和备考研究生的参考用书,也可供教师、科技工作者参考使用。 -
天才中小学生智力测验题刘培杰数学工作室 编全书囊括了中小学生常见的智力测验题,也包括很多难度较高的问题。书中的问题很有趣,解题思路多样。《天才中小学生智力测验题(第二卷)》包括智力测验、趣味数独、趣味习题和英语阅读四大部分。《天才中小学生智力测验题(第二卷)》适合中小学生及数学爱好者阅读。 -
天才中小学生智力测验题刘培杰数学工作室 编全书囊括了中小学生常见的智力测验题,也包括很多难度较高的问题。书中的问题很有趣,解题思路多样。《天才中小学生智力测验题(第六卷)》包括智力测验、趣味数独、趣味习题和英语阅读四大部分。《天才中小学生智力测验题(第六卷)》适合中小学生及数学爱好者阅读。 -
数学实验孙旭东,干国胜 编《数学实验》以通俗易懂的语言,全面而系统地讲解数学实验的内容。《数学实验》共分7章,内容包括一元微积分实验、多元微积分实验、向量代数实验等,每章都以例题的形式将有关内容与Mathematica相结合,达到理论与实践的统一,便于读者学习和上机实验。每节后面有“习题”,并在附录中有Mathematica的基本操作。 -
线性代数及其应用顾丽娟 编在新的教学改革形势和课程教学计划指导下编写出一套比较成熟的教材,实在不是一件轻而易举的事,它应该是一个长期努力的过程,原因有许多方面。内因之一便是我们编者的水平问题,外因之一便是中国当前“数学科学”的环境问题。编者积累了十多年的《线性代数》教学经验,为了适应高等院校培养应用型、复合型高级专门人才而编写了《线性代数及其应用》。《线性代数及其应用》内容的选取充分体现了“以应用为目的,以必须够用为度”的原则,以“强化概念,注重应用”为依据,既考虑了人才培养的应用性,又能使学生具有一定可持续发展性。
