数学
-
数学教育评价理论与方法朱文芳 著数学教育评价发展简史;数学教育评价的依据;数学教育评价的标准;数学教育评价证据的收集方法;学生数学学习的评价方法;学生数学非智力因素的评价方法;数学教师评价的理论与方法;数学教学评价的理论与方法。 -
生成函数讲义S.K.Lando 著《生成函数讲义(影印版)》向读者介绍了生成函数的语言,它是当今计数组合学的主要语言。该书从定义、简单的属性和许多生成函数的例子开始。然后讨论了形式语法、多变量生成函数、分拆和分解以及容斥原理等主题。在最后一章中,作者描述了树、平面图和嵌入在二维曲面中的图的计数应用。在全书中,作者通过提供有趣的例子而不是一般理论来激发读者的兴趣。该书包含许多练习来帮助学生学习。该书是一学期的组合数学本科课程的优秀教材。 -
数学分析习题全解指南陈纪修,徐惠平,周渊,金路,邱维元 编《数学分析(第三版)习题全解指南(上册)》是与陈纪修、於崇华、金路编写的《数学分析》(第三版)相配套的学习辅导书,是教育部“高等教育面向21世纪教学内容和课程体系改革计划”和教育部“理科基础人才培养基地创建优秀名牌课程数学分析”项目的成果,全书内容包含了教材中全部习题的详细解答,也包括了补充习题资源中部分有难度的习题的解答提示。《数学分析(第三版)习题全解指南(上册)》不仅可作为高等学校学习数学分析课程的学生的学习参考书与讲授数学分析课程的教师的教学参考书,也可作为准备报考高等学校理工科各专业研究生的学生的复习参考书。 -
线性代数学习辅导张卓奎 著本书是根据高等院校各专业对“线性代数”的学习、复习及应试要求而编写的,主要内容包括行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型。 本书各章均由三部分组成,即考点内容讲解、考点题型解析、经典习题与解答。“考点内容讲解”部分对每章的基本内容按照知识结构分为概念、性质和结论几个层面,结合读者应掌握的重点作了比较详细的讲解、概括和总结;“考点题型解析”部分根据考试规律选择常考题型,分类解析,以题说法,开拓思路,开阔视野,帮助读者提高分析问题、解决问题、变通问题的应试能力;“经典习题与解答”部分是对考点题型解析的有益补充,是读者学习解题方法的训练场。 本书叙述通俗易懂,概念清晰,实用性强,可作为高等院校“线性代数”课程的教学参考书,也可作为高等院校教师、报考硕士研究生的考生和工程技术人员的参考书。 -
应用数学分析基础阴文革 著应用数学分析基础是在重庆大学“高等数学”课程教材体系改革试点工作的配套讲义的基础上历经 20 多年修订而成的. 与传统高等数学教材相比, 《应用数学分析基础(第三册)(多元函数微积分学)》不仅注重让学生理解、掌握高等数学的内容, 同时也强调培养学生实事求是的科学态度、严谨踏实的科学作风和追根究底的科学精神. 《应用数学分析基础(第三册)(多元函数微积分学)》共分四册, 本册为多元函数微积分学, 内容包括 n 维欧氏空间、多元函数微分学、多元函数积分学及其性质三章, 各节均配有习题, 各章末配有总习题. -
可靠性理论中的数学方法艾尼·吾甫尔 著《可靠性理论中的数学方法》以简短的篇幅介绍建立可修复系统的数学模型及其研究的思想和方法. 《可靠性理论中的数学方法》共分四章. 第 1 章提供预备知识, 第 2 章首先阐述可靠性数学的形成和发展, 然后介绍描述产品可靠性的数量指标. 第 3 章首先详细介绍马尔可夫型可修系统的一般模型并求可靠性指标的步骤, 其次通过许多实际问题的讨论来介绍用一维马尔可夫过程建立数学模型的思想与过程,最后介绍通过数学模型求可靠性指标的方法. 第 4 章首先介绍用补充变量方法建立数学模型的过程, 然后介绍运用泛函分析的理论与方法对该数学模型进行动态分析的思想. -
多元分析学黄永忠 著内容:矢量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分、无穷级数。本书风格独特、特点鲜明、内容丰富、例题典型。主要是基于研究型大学创新人才培养理工科各专业实验班,加强厚实的数学基础,加强数学思想方法和应用数学能力,强化逻辑思维能力的培养。 -
概率论与数理统计学习指南王晓杰,韩建新,郭洪峰,刘贵基 著,王晓杰,韩建新,郭洪峰,刘贵基 编《概率论与数理统计学习指南/21世纪高等院校创新教材》内容与刘贵基等主编的《概率论与数理统计》教材同步,内容包括随机事件与概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理、数理统计基本概念等。每章结构包括基本要求、典型题解析、考研真题拾零、自测题及参考答案五个部分。基本要求部分给出了学习本章应了解、理解、掌握或会的知识点;典型题解析部分是通过对内容和方法进行归纳总结,把基本理论、基本方法、解题技巧、数学应用等方面的教学要求融于其中,从而达到举一反三、触类旁通的效果;考研真题拾零部分编选了近几年硕士研究生入学统一考试数学(三)试卷中概率论与数理统计试题;自测题部分结合每章的基本要求遴选了一定数量难度适宜的题目,可作为教材习题的补充。 -
大学生数学竞赛习题精讲陈兆斗,黄光东,赵琳琳,邓燕 著本书是为大学生数学竞赛(非数学专业)编写的教学辅导教材,内容覆盖了大学高等数学(微积分)等课程。全书共有7章,共约1200多道题,其中有精心选取的全国竞赛(非数学类)的部分原题。书中还给出了最近几届全国大学生数学竞赛(非数学类)的试卷,有别于试卷本身的“参考答案”,我们对部分题目重新做了解答,为读者提供了更高质量的参考解答。题目难度有一定的差异,以适合不同层次和不同专业的学生对数学竞赛或考研辅导的需求。全部习题都附有较详细的解答,以便于读者自学。书中经典的基本题约占二分之一,且涵盖的题目类型广泛,近年数学竞赛的很多题目都可在本书中找到踪影。对于经济和管理类的学生,除了“曲线与曲面积分”一节的内容之外,其他章节皆适用。此外,书中加入了一些历史上的数学名题,如“最速降线问题”“等周问题”“圆周率是无理数”; 还提供了一些数学新题,如“公路占地原理”“弯管的启示”等,以适合高层次学生对数学知识的追求。新版中对每一节的习题都做了详细的分类,特色题大都给予命名并开列在目录中,以帮助读者归纳和查找,使该书的内容更加系统化。 -
数学2俞玫 著《数学2》为几何类内容,包括立体几何及解析几何两个模块。两册书从不同的方向和角度全方位阐释了基础的数学知识。并针对贯通培养项目的特点,注重知识的趣味性以及与后续数学课程和专业课程的衔接性,为学生进一步学习、获得较高数学素养奠定基础。
