数学
-
微分方程数值方法王汉权,成蓉华《微分方程数值方法——有限差分法》介绍了微分方程数值求解方法——有限差分法。内容涉及有限差分法的基本设计过程与具体的实现过程,有限差分法在工程、科学和数学问题中的应用以及MATLAB程序,涵盖了有限差分法的很多内容:常微分方程的数值解法;二阶椭圆型、二阶抛物型及二阶双曲型方程的数值算法;各种非线性偏微分方程以及非线性偏微分方程组的数值方法; 数值积分与数值微分在偏微分方程求解过程中的应用等。《微分方程数值方法——有限差分法》的一大特色是给出大量的应用实例并附MATLAB程序。 -
图上独立圈若干问题的结构参数高云澍The study of graph theory started over two hundreds years ago. The earliest known paper is due to Euler(1736) about the seven bridges of Korugsberg. Since 1960s, graph theory has developed very fast and numerous results on graph theory sprung forth. There are many nice and celebrated problems in graph theory, such as Hamiltonian problem, four-color problem, Chinese postman problem, etc. Moreover, graph theory is widely applied in chemistry, computer science, biology and other disciplines. As a subfield in discrete mathematics, graph theory has attracted much attention from all perspectives.All graphs are considered only finite, simple, undirected graphs with no loops and no multiple edges. Let G be a graph. The Hamiltonian cycle problem is one of the most well-known problems in graph theory. A cycle which contains every vertex of G is called a Hamiltonian cycle. A cycle is called a chorded cycle if this cycle contains at least one chord. A k-factor in a graph G is a spanning k-regular subgraph of G, where k is a positive integer. There exists many interesting results about the existence of k-factor, by applying Tuttes Theorem, however, we mainly focus on the existence of 2-factor throughout this thesis. Clearly, a Hamiltonian cycle is a 2-factor with exactly one component. From this point of view, it is a more complex procedure to find the condition to ensure the existence of 2-factor in a given graph. The most usual technique to resolve 2-factor problems is to find a minimal packing and then extend it to a required 2-factor.The book is concerned with structural invariants for packing cycles in a graph and partitions of a graph into cycles, i.e., finding a prescribed number of vertex-disjoint cycles and vertex-partitions into a prescribed number of cycles in graphs. It is well-known that the problem of determining whether a given graph has such partitions or not, is NP-complete. Therefore, many researchers have investigated degree conditions for packing and partitioning. This book mainly focuses on the following invariants for such problems: minimum degree, average degree (also extremal function), degree sum of independent vertices and the order condition with minimum degree. -
贝叶斯数据分析 第3版(美)安德鲁·格尔曼This book is intended to have three roles and to serve three associated audiences: anintroductory text on Bayesian inference starting from first principles, a graduate text oneffective current approaches to Bayesian modeling and computation in statistics and relatedfields, and a handbook of Bayesian methods in applied statistics for general users of andresearchers in applied statistics. Although introductory in its early sections, the book isdefinitely not elementary in the sense of a first text in statistics. The mathematics usedin our book is basic probability and statistics, elementary calculus, and linear algebra. Areview of probability notation is given in Chapter 1 along with a more detailed list of topicsassumed to have been studied. The practical orientation of the book means that the reader'sprevious experience in probability, statistics, and linear algebra should ideally have includedstrong computational components.To write an introductory text alone would leave many readers with only a taste of theconceptual elements but no guidance for venturing into genuine practical applications, be-yond those where Bayesian methods agree essentially with standard non-Bayesian analyses.On the other hand, we feel it would be a mistake to present the advanced methods with-out first introducing the basic concepts from our data-analytic perspective. Furthermore,due to the nature of applied statistics, a text on current Bayesian methodology would beincomplete without a variety of worked examples drawn from real applications. To avoidcluttering the main narrative, there are bibliographic notes at the end of each chapter andreferences at the end of the book. -
解析几何马慧龙《解析几何》一方面内容充实,通俗易懂,是学习几何学的入门教材。书中既讲解了空间解析几何的基本内容和方法(向量代数,仿射坐标系,空间的直线和平面,常见曲面等),又讲解了仿射几何学中的基本内容和思想(仿射坐标变换,二次曲线的仿射理论,仿射变换和等距变换等),还介绍了射影几何学中的基本知识,较好地反映了几何学课程的全貌。该书突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用“实例一理论一应用”的方式,具体易懂;内容选取上兼顾各类高校的教学情况,具有广泛的适用性。《解析几何》表达通顺,说理严谨,阐述深入浅出。另一方面注意培养读者的空间想象能力,这尤其体现在第三章中关于旋转面、柱面和锥面方程的建立。《解析几何》论证严谨,同时又力求简明;叙述上深入浅出,条理清楚,注意讲清所讨论问题的来龙去脉。 -
连续最优化高级教程 第1卷刘进,马满好,祝江汉,李志猛,李海峰,于连飞本书主要介绍连续优化的原理和模型,包括预备知识、凸集、凸函数、凸模型、优性条件、强弱对偶以及一些涉及全局优化和非光滑优化的概念。本书的特色在于:一是精确,全书采用了大量的数学符号辅助行文表述,每一个定义、定理的条件交代清晰;二是丰富,全书包含了连续优化相对全面和精华的内容,定义多、定理多、例子多;三是详细,全书中的几乎每一条定理都给出了详细证明,每一个例子都给出了详细的计算。本书严谨规范,可作为数学、管理、控制等专业的研究生课程的教材和相关专业科研工作者的参考材料。 -
运筹学上机简明教程与案例指导王桂强《运筹学上机简明教程与案例指导》是一本突出计算机教学特色的运筹学上机实验教程。全书由11章构成,介绍了运筹学主要分支的计算机建模和操作,包括线性规划、动态规划、目标规划、整数规划、运输问题、网络分析与网络规划、数据包络分析、决策树分析等;结合相应案例和上机操作,详尽介绍了在Microsoft Excel平台下的“规划求解”(Solver)加载宏的应用。《运筹学上机简明教程与案例指导》可作为运筹学课程上机训练指南,也可以作为数据模型与决策、运作管理或决策模拟等课程的案例教学材料。对于寻求管理实践中决策为目的的读者,《运筹学上机简明教程与案例指导》亦可作为一本通俗易懂的运筹规划和决策建模手册使用。 -
有限双Cayley图的同构问题靳伟《有限双Cayley图的同构问题》主要研究了双Cayley图的同构问题。对Cayley图的同构问题研究起步较早,称为Cayley图的CI性,并取得了丰富的成果。然而对双Cayley图同构问题的研究到目前为止还很少,因此《有限双Cayley图的同构问题》对双Cayley图的同构问题的研究具有重要意义。类似于Cayley图的CI性,我们可以定义双Cayley图的BCI性。我们主要研究对m≥3的群的m-BCI性。首先,决定了3-BCI-群的Sylow子群的所有可能性;其次,作为上述结论的应用,决定了所有的有限非交换单3-BCI-群;最后,我们研究有限循环群的m-BCI性。 -
数学与生活3 无穷与连续[日] 远山启 著,逸宁 译不懂音符、乐理的人也能欣赏音乐,甚至可以成为音乐鉴赏家。不懂数学公式的人,是否也能理解现代数学的体系与思考方法,领略其中令人惊叹的超越性美景呢?本书是从“欣赏”的角度通俗解读现代数学的科普作品。书中用直观、生动的例子,梳理了现代数学的发展脉络,在“直观”与“抽象”交织的视角下,展示了数学思考中的“自由性”与“逻辑性”。本书可作为了解现代数学的通俗读本,也适合作为高中生、大学生理解数学的参考资料。 -
高等数学简明教程张忠 编《高等数学简明教程(上)》是在教育部对普通高等院校深化教学改革的精神和对独立院校新的教学要求的背景下,由我校领导高度重视并组织长期在一线教学的数学老师编写而成!上册包括极限与连续、导数与微分、不定积分、定积分及其应用四章。全书内容通俗易懂,简约实用,同时突出高等数学的基本思想和基本方法,内容编写更加精简。《高等数学简明教程(上)》在保持微积分体系的完整性和结构的合理性的同时,尽量减少抽象的理论推导和一些定理的证明,在重要的概念引入之时,尽可能做到简明、自然和浅显,力求做到“简约实用”;充分考虑教学的需要,依循序渐进的原则,以适当的难度梯度选编教学例题。 -
高等数学潘新,曹文斌,顾莹燕,殷冬琴 编随着教育改革的不断深入与发展,为了满足高等职业教育对于数学这一基础学科的要求,我国不少高校和有关部门已积极编写了不同版本的高等数学教材。本教材是结合当前高职高专院校对于高等数学教材的使用情况,取长补短,集思广益,以苏州经贸职业技术学院数学教研室为主编写的,力求内容简单实用,对过去一些传统的观念进行了力度较大的改革,简化理论的叙述、推导和证明,力求直观,注重实际应用。在编写过程中,我们本着“必需、够用”的原则,对于必备的基础理论知识等方面的内容,主要给出概念的定义,对有关定理的条件和结论,一般不给出严格的推导和证明,仅在必要时给出直观而形象的解释和说明。编写重点放在计算和实际应用等方面,以强化学生解决实际问题的能力。本教材分上、下两册。上册的主要内容为:函数、极限与连续,导数与微分,导数的应用,不定积分,定积分及其应用,常微分方程;下册的主要内容为:级数、空间解析几何与多元函数微积分、行列式与矩阵、概率与数理统计初步。另外,每节都配备了本章内容一定量的习题,每章都配备了本章内容小结和自测题。书后对于上述题目给出了答案或提示,以便学生及时对所学知识进行检验。参加本教材编写的有潘新、魏彦睿,殷冬琴、顾莹燕、曹文斌、殷建峰、顾霞芳。蔡奎生、唐哲人、李鹏祥对本教材进行了校对和整理。本教材的框架构思、内容设计,得到了同行、专家和兄弟院校的指点与大力支持,在此表示衷心的感谢。尽管我们力求完善,但书中错误和不当之处在所难免,还望各位同行、专家多加批评和指正。
