数学
-
线性代数邓建平本书严格按照“线性代数课程教学基本要求“在南京大学多年教学经验的基础上精心编写而成的,是一本大学数学基础课程的教材. 本书介绍线性代数的基本理论和基本方法, 内容包括行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型、线性空间与线性变换、内积空间. 本书每章中都附有丰富的练习和习题, 练习供学生课堂使用, 习题供学生课后使用. 书后对几乎全部的习题都做了比较完整的解答,使本书具有更好的适用性. 本书力图体现线性代数教学改革精神,在选材上深入浅出, 理论上引人入胜, 方法上精巧多彩. 这样编排的目的在于使读者深刻领会数学思想, 掌握数学技巧,提高数学能力. 本书可作为高等院校开设线性代数课程的各专业的教材,也可以作为考研忱者备考的参考用书. -
随机传染病动力学模型王玮明本书系统介绍了随机传染病动力学模型建立、分析以及数值分析,以期为传染病防控提供科学依据。全书共8章:第1章详细介绍了传染病动力学仓室建模方法和基本再生数的计算、随机模型构建及研究进展等;第2章给出了随机传染病模型研究需要的基础知识,包括概率空间、随机过程、It*微积分、随机微分方程及其稳定性、Markov半群、不变测度以及Fokker-Planck方程等;第3,4,5章分别研究了人口流动、干预策略、媒体报道等因素对随机传染病模型动力学行为的影响机制;第6章给出了猫免疫缺陷病毒模型的随机分析,特别是考虑了季节变化对疾病传播的影响;第7章研究了具有均值回归过程的随机传染病模型动力学行为;第8章给出了随机传染病动力学模型研究的基本算法及其相应的R程序代码。 -
流浪地球的数理化刘慈欣 等著本书是原著小说、电影和初高中数理化知识的三重结合。从《流浪地球》小说原著故事出发,深入浅出地用实用科学辨证原著中的“地球流浪”设定。图文结合,图片采用二次元和写实两种画法,迎合青少年读者的兴趣喜好。书中从原著中挖掘采用的知识点紧密贴合现今综合理学的主题。主要内容是“地球流浪”涉及到的天文物理学,其中涵盖了初中、高中的数学、物理、化学、生物等综合理科知识。这些知识点在书中呈现出相当的广度和深度。阅读这本书,读者不仅可以看见熟悉的初高中数理化的知识,也能看见更高层次的知识理论。无论是初中生、高中生,还是纯粹的科幻文学爱好者,都能从书中找到自己的乐趣,获得知识和阅读的双重愉悦。 -
Hilbert型不等式的理论与应用洪勇,和炳本书利用权系数方法、实分析技巧以及特殊函数的理论,系统地讨论了Hilbert型不等式,不仅讨论了若干具体核的情形,更从一般理论上讨论了各类抽象核的Hilbert型不等式**常数因子的参数搭配问题,进而讨论了构建Hilbert型不等式的充分必要条件,陈述了Hilbert型不等式的**理论成果,为探讨有界积分算子和离散算子的构建及算子范数的计算提供了方法。《BR》本书上册主要探讨低维的Hilbert型不等式及应用,由于针对各式各样的核陈述了大量的Hilbert型不等式,因此读者可以从本书中方便地查到目前散见于各文献中的结果。下册以讨论高维Hilbert型不等式为主,把低维结果推广到高维情形。 -
Hilbert型不等式的理论与应用洪勇,和炳本书利用权系数方法、实分析技巧以及特殊函数的理论,系统地讨论了Hilbert型不等式,不仅讨论了若干具体核的情形,更从一般理论上讨论了各类抽象核的Hilbert型不等式**常数因子的参数搭配问题,进而讨论了构建Hilbert型不等式的充分必要条件,陈述了Hilbert型不等式的**理论成果,为探讨有界积分算子和离散算子的构建及算子范数的计算提供了方法。《BR》本书上册主要探讨低维的Hilbert型不等式及应用,由于针对各式各样的核陈述了大量的Hilbert型不等式,因此读者可以从本书中方便地查到目前散见于各文献中的结果。下册以讨论高维Hilbert型不等式为主,把低维结果推广到高维情形。阅读本书需要具备实分析、泛函分析、算子理论及特殊函数的基本知识。 -
生物数学微分方程模型的分析方法史峻平、苏颖、王金凤本书介绍生物数学中微分方程模型及分析方法,包括单变元和多变元的常微分方程、反应扩散方程的模型的建立和相应分析数学方法,特别介绍了反应扩散方程的分歧理论,也介绍了其他方法,如二元常微分方程组的相图分析、极值原理和比较方法,以及反应扩散方程计算的数值方法。书中介绍了生物数学中众多经典的模型,如生态种群的竞争、捕食-食饵模型的建立与分析。 -
凸分析讲义李庆娜本书重点介绍了凸函数的极、对偶运算、凸集的面、多面体凸集、多面体凸函数、Helly定理、不等式系统等相关内容。前两章是对偶理论的基础工具。后面则重点阐述了凸集的内、外部表达形式和相关性质,并将结果应用于线性和非线性不等式系统。这些内容都是凸性理论的进一步细化和拓展。为了增强可读性,本书将抽象的概念用简单的例子和直观的图像来表达,以便加深读者对知识的理解和把握。同时,将知识点与**化部分前沿研究内容进行有机结合,希望可以为读者提供一些基础理论在前沿科学研究课题中的方向。 -
刨花板施胶系统的数学建模及稳定性分析丁宇婷刨花板生产过程中的施胶系统是衡量刨花板生产技术水平的主要标志之一,其控制性能直接影响产品质量和生产成本。本书介绍了林业工程领域的刨花板施胶过程的几类局部系统,在现有常微分方程的基础上引入时间延迟、非线性、耦合等重要影响因素,建立更符合实际过程的具有时间延迟的非线性微分方程模型。应用延迟微分方程的分岔理论和规范型方法,分析系统的动力学性质,解释和预测系统的稳定平衡态、稳定周期态、稳定拟周期态等复杂动力学现象,阐明系统产生复杂现象的根源,从而实现控制系统达到预期状态的目的,并通过数值仿真将这些新奇的动力学现象加以展示。 -
高等数学竞赛题解析教程陈仲本书根据中国数学会制订的“中国大学生数学竞赛大纲”、江苏省普通高等学校非理科专业高等数学竞赛委员会制订的“高等数学竞赛大纲”、教育 部制订的“考研数学考试大纲” 编写,内容分为极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、重积分、曲线积分和曲面积分、空间解析几何、级数、微分方程九专题,每个专题又含“基本概念和内容提要”“竞赛题解析”和“练习题”三个部分。本书竞赛题选自全国、江苏省、浙江省、上海市、北京市等省市普通高等学校非理科专业历届高等数学竞赛试题,南京大学等国内高校历年大学数学竞赛试题,以及莫斯科大学等国外高校大学生数学竞赛试题。本书可作为大学生参加高等数学竞赛的的培优教程,也可作为大学生学习高等数学的参考书。 -
MATLAB运筹学卓金武、段蕴珊、姜晓慧本书以经典运筹学理论为基础,借鉴国外优秀运筹学领域的部分经典理论,新增全局优化算法,并融合MATLAB实现案例,系统介绍运筹学的原理、模型、算法及使用MATLAB的实现。本书采用运筹学理论与MATLAB实现相辅相成的编写模式,理论和实践相结合,更有利于读者学习并将学习成果快速转换为实际应用。全书分三篇,共13章内容。第一篇(第1~7章),主要介绍经典的运筹学理论和方法;第二篇(第8~11章),介绍四种经典的全局优化算法;第三篇(第12和第13章),介绍两个运筹学的综合应用案例。前两篇是本书的主体,主要包括运筹学模型的概念、原理、算法的实现步骤,参数的选取,算法、案例的MATLAB实现过程(通过实际案例将算法与命令融合在一起,包括详细的代码、结果)等内容。本书可作为本科生、研究生的运筹学教材或参考用书,还可作为广大科研人员、学者、工程技术人员的参考用书。
