数学
-
微积分基础教程李庶民 编《微积分基础教程(下册 第二版)》依据教育部高等学校大学数学课程教学指导委员会制定的《大学数学课程教学基本要求(2014年版)》编写而成,内容深度和广度同时适合普通高等院校和应用型本科高等院校经管类和理工类相关各专业学生使用,编写时力求使这两类专业在微积分课程中的差异性内容区分度明确,组织教学时便于教师灵活取舍而不影响对其他相关知识的教学。《微积分基础教程(下册 第二版)》保持了一版中对现行微积分课程教学体系所作的较大幅度的结构调整,将微积分课程按照微分学体系与积分学体系作了划分,先将一元和多元微分学的内容有机糅合,全面系统地介绍微分学,然后再系统地介绍包括定积分、重积分、曲线与曲面积分在内的积分学。可使读者由一元微分学过渡到多元微分学、由一元积分学过渡到多元积分学都更容易。本次修订秉承“坚持改革,不断完善,适应教学,提升水平”的理念,在保持全书体系不变的前提下,对一版中的错误及不妥之处一一作了修订,对全书行文作了润色,部分内容作了充实完善,仔细推敲并统一了一些记号,增补和更换了少量例题习题,以使该书更加完善,更好地满足教学需要。《微积分基础教程(下册 第二版)》分上下两册出版,下册内容包括重积分、曲线积分与曲面积分、无穷级数、微分方程与差分方程等内容。《微积分基础教程(下册 第二版)》相关知识点旁边配有视频讲解二维码,重要习题、例题旁边配有试题讲解二维码,读者可通过扫描的方式浏览学习。 -
全国大学生数学竞赛辅导指南张天德,窦慧,崔玉泉,王玮,孙钦福 著本指南是针对非数学专业的全国大学生数学竞赛而编写的,共安排三个部分。第一部分的内容是10届预赛试题及答案,使读者先睹为快,感受竞赛试题的难易程度;第二部分考点直击,给出考试要求并对考点进行综述,给出相关的出题方式和解题点拨,有利于考生有效提高数学水平;第三部分是各届决赛试题,开阔读者眼界。 -
差分方程理论及其应用马如云 等 著《差分方程理论及其应用》论述线性和非线性差分方程的理论及其应用, 包括差分及和分的概念与性质、线性差分方程解法、线性差分算子的正性及相应非线性边值问题的正解的存在性和多解性、线性差分方程的非共轭概念、线性差分方程边值问题Green函数的符号、带不定权二阶线性差分方程边值问题的谱理论、离散Fucík谱理论、非共振情形和共振情形下非线性二阶差分方程边值问题的可解性、全局分歧理论在含参非线性二阶差分方程边值问题中的应用、非线性二阶微分方程边值问题离散差分格式解的收敛性以及差分方程稳定性理论简介. -
泛函分析引论徐景实,林诗游 著为适应高等学校数学类课程改革的需要,编者总结多年教学实践经验,并在吸收国内外的一些优秀教材的基础上编写了《泛函分析引论》.《泛函分析引论》内容包括度量空间、线性算子与线性泛函、线性算子的谱等. 每节后均配有练习,书后配有练习提示或答案并配有附录和名词索引. -
高等工程数学朱元国 等 著《高等工程数学》内容体现经典与现代的紧密结合, 符合高校工科专业对数学的基本需求. 主要内容有距离与范数, 包括向量范数与矩阵范数; 矩阵的标准形与特征值计算, 包括矩阵的 Jordan标准形及特征值的幂迭代法; 矩阵分解与广义逆矩阵, 包括三角分解、满秩分解和奇异值分解; 线性方程组的数值解法, 包括直接解法与迭代解法; 较优化方法, 包括单纯形法、较优性条件、牛顿法、共轭梯度法、罚函数法、组合优化问题的模拟退火算法与遗传算法; 函数逼近与数据拟合, 包括多项式插值、较小二乘法、小波变换; 偏微分方程及其数值解法, 包括定解问题、解析方法、有限差分法、有限元方法; 统计分析, 包括一元及多元线性回归、贝叶斯统计、多元正态分布的参数估计与假设检验. -
概率论与数理统计学习指导张艳,张蒙,崔景安 著本书是与清华大学出版社2017年出版的《概率论与数理统计(第2版)》(张艳、程士珍主编)教材相配套的学习辅导书.内容包括该书各章的知识点、典型例题、习题与综合练习题全解,另外,还配有大量的训练题及参考答案,以供考研学生提升解题技巧.本书注重体现概率统计的思想方法与基本内容,强调对学生解题方法与能力的培养,力求做到深入浅出,通俗易懂,便于教学与自学. 本书既可以作为高等院校概率论与数理统计的教学参考书,也可以作为数学爱好者学习概率统计的补充读物. -
数学分析讲义张福保,薛星美,潮小李 著《数学分析讲义(第三册)》是作者在东南大学连续20多年讲授“数学分析”课程的基础上写成的,并已连续试用近10年。《数学分析讲义(第三册)》取名为“讲义”,较大特点就是一切从读者的角度去讲解,既注重数学思想的阐述和严格的逻辑推导,又突出实际背景与几何直观的描述,并适当穿插了一些数学文化的介绍。在编排上尽量体现先易后难和分步走的原则。习题分类安排,即分为A、B、C三类。其中,A类是基本题,B类是提高题,C类是讨论题。《数学分析讲义(第三册)》对讨论题给予更多关注,目的在于帮助学生厘清概念,增强研学与创新能力。《数学分析讲义(第三册)》分为三册,第一册包括极限、连续、导数及其逆运算(不定积分),第二册包括实数理论续(含上极限、下极限、欧氏空间)、定积分及多元微积分,第三册包括级数与反常积分(含参变量积分)等。 -
数学分析讲义张福保,薛星美,潮小李 著《数学分析讲义(第二册)》是作者在东南大学连续20多年讲授“数学分析”课程的基础上写成的,并已连续试用近10年。《数学分析讲义(第二册)》取名为“讲义”,较大特点就是一切从读者的角度去讲解,既注重数学思想的阐述和严格的逻辑推导,又突出实际背景与几何直观的描述,并适当穿插了一些数学文化的介绍。在编排上尽量体现先易后难和分步走的原则。习题分类安排,即分为A、B、C三类。其中,A类是基本题,B类是提高题,C类是讨论题。《数学分析讲义(第二册)》对讨论题给予更多关注,目的在于帮助学生厘清概念,增强研学与创新能力。《数学分析讲义(第二册)》分为三册,第一册包括极限、连续、导数及其逆运算(不定积分),第二册包括实数理论续(含上极限、下极限、欧氏空间)、定积分及多元微积分,第三册包括级数与反常积分(含参变量积分)等。 -
平几大典车宏路,王世强暂缺简介... -
数学分析讲义张福保,薛星美,潮小李 著《数学分析讲义(第一册)》是作者在东南大学连续20多年讲授“数学分析”课程的基础上写成的,并已连续试用近10年。《数学分析讲义(第一册)》取名为“讲义”,较大特点就是一切从读者的角度去讲解,既注重数学思想的阐述和严格的逻辑推导,又突出实际背景与几何直观的描述,并适当穿插了一些数学文化的介绍。在编排上尽量体现先易后难和分步走的原则。习题分类安排,即分为A、B、C三类。其中,A类是基本题,B类是提高题,C类是讨论题。《数学分析讲义(第一册)》对讨论题给予更多关注,目的在于帮助学生厘清概念,增强研学与创新能力。《数学分析讲义(第一册)》分为三册,第一册包括极限、连续、导数及其逆运算(不定积分),第二册包括实数理论续(含上极限、下极限、欧氏空间)、定积分及多元微积分,第三册包括级数与反常积分(含参变量积分)等。
