数学
-
从阿基米德三角形谈起苏化明阿基米德定理是一个古老且著名的数学问题。本书将这个涉及抛物线弓形与阿基米德三角形之间的面积关系问题类比到双曲线、椭圆、幂函数等曲线,得到了相应的关于这些曲线的几何不等式,本书还将抛物线中的阿基米德三角形三边之间的斜率关系类比到某些初等函数曲线,也得到了相应的不等式。本书可供大中师生及数学爱好者参考阅读。 -
一种基于混沌的非线性最优化问题[埃],M.A.艾尔一萨尔巴吉本书展示了一种新的混合优化方法来解决最重要的**化问题之一——非线性**化问题。本书共包含六章内容,第一章提出了**化问题的数学模型;第二章致力于介绍遗传算法的工作原理,并解释了遗传算法是如何应用到解**化问题之中的;第三章提出了解非线性**化问题的一个新算法;第四章提出了作业安排调度问题的结构,引入了作业安排调度问题的公式化;第五章的目的是实施解作业安排调度问题的新方法,并解释了它的细节;第六章为结论以及给未来研究者的几点建议。 -
问题解决与数学学习邓佳欣 田满红本书以人力资源社会保障部印发的《技工院校数学课程标准(2016)》为依据,根据技工院校的教学特点,在充分调研和吸收一线教师意见的基础上编写而成,供教师在教学中参考。本书内容面向应用型、技术技能型人才培养,注重学生职业技能、职业素养和数学学科核心素养的提升。为满足不同年级和不同专业类别教学的需要,本书分为两个部分:第一至第七章为中级工部分,第八至第十六章为高级工部分,每一章分别对应生物制药专业、数控专业、机电专业、汽车商务专业、电气专业等,定向为专业学习和岗位工作服务。“在工作中学习、在学习中工作”是技工教育需秉持的理念。推进工学一体化,就是着力实现从知识灌输向能力培养转变、从课堂教学向生产教学转变、从书本教学向实践教学转变。本书通过设置个性化、多样化的实践栏目,促使学生综合运用数学知识技能处理专业、生活和未来工作中的问题,提高判断能力和解决实际问题的能力。同时,每个知识点都有思想政治元素的融入,促使学生养成实事求是、积极进取的精神,展现“大国工匠”的风采。此外,本书每个章节均有对应的知识点、教学建议和学习背景,帮助教师更加直观地把握教学重点。 -
扭曲、平铺与镶嵌[美]罗伯特.J.朗《扭曲、平铺与镶嵌:几何折纸中的数学方法(英文)》就是这样一部由一位美国数学家和物理学家所著的英文版的用数学研究折纸艺术的学术著作,中文书名或可译为《扭曲、平铺与镶嵌:几何折纸中的数学方法》。该书的作者为罗伯特·J.朗,美国人,全职折纸艺术家和顾问。五十多年来罗伯特·J.朗一直是折纸的狂热爱好者,现在被公认为领先的折纸艺术大师之一。他以细节和现实主义的设计著称,他的作品包括一些有史以来复杂的折纸设计,将西方数学折纸设计学派的各个方面与东方对线条和形式的强调相结合,产生了独特、优雅且很难折叠的设计,他的作品曾在纽约(现代艺术博物馆)、巴黎(罗浮宫卡鲁塞尔厅)、塞勒姆(皮博迪·埃塞克斯博物馆)、圣地亚哥(世界民俗艺术博物馆)和日本加贺(日本折纸博物馆)的展览中展出。他是计算折纸技术的先驱之一,并发表了大量有关折纸理论和数学之间关系的文章。朗博士出生在俄亥俄州,在佐治亚州的亚特兰大长大,目前为全职折纸艺术家和顾问,他曾在担任物理学家、工程师和研发经理期间,单独撰写或与人合著了80多种科技出版物,并获得了50项关于半导体激光器、光学和集成光电子的专利。2007-2010年,他被选为美国光学学会(Optical Society of America)的会员,并担任《IEEE量子电子学》杂志的主编,在将主要关注点转向折纸之后,他单独撰写或与人合著了许多关于折叠数学和技术应用中折叠设计技术的文章。2009年,由于他的折纸作品,他获得了加利福尼亚理工学院的杰出校友奖,2013年他被选为美国数学学会成员。 -
创新设计思维原则 Principles of Innovative Design ThinkingWenjuan Li, Zhenghe本书提出了一种创新设计理论的综合体系,能够提升设计中所必需的创新思维和创造力。该理论构建了设计中各元素以及设计过程的模型和算法,能够帮助收集和量化概念设计阶段中可用的较为模糊的设计信息,通过推动创造性的思维和抽象性思考,促进设计的逻辑性和结构化的进程。该理论应用可拓学探索设计问题的重构和设计思维的发散,并应用公理化设计理论指导功能需求和设计参数的迭代分解,在此过程中促进创新思维和创新设计方案的产生。可拓学与公理化设计理论的协同作用,是跨专业、跨学科的协同研究和发展,同时融合了中国哲学中的抽象思维模式和西方理论中的迭代设计流程。 本书能够帮助学生以及工程、自然和社会科学、商业等多领域的从业人员建立解决设计问题的创造性和创新性的思维及方式。 -
火柴游戏吴振奎本书是一本可以供自己及家人和朋友一起玩的游戏书,书中的游戏包括用火柴摆成的三角形组合、方形组合、阿拉伯数字及汉字图形等,此外还有一些火柴算题.通过游戏的方法使数学的学习不再乏味. -
相对论多体理论与统计力学[以]劳伦斯.P.霍维茨在书中,作者描述了斯图克尔伯格、霍维茨和皮隆理论,该理论为多体问题的讨论提供了一个全面的、经典的和量子力学相对论的协变量框架。该理论的本质特征是爱因斯坦的时间t,即在惯性实验室的标准通用时钟上测量的事件到达时间,也对应于麦克斯韦方程中出现的变量t,其被认为是一个可观察量。事件发生的时间t是主题,还有事件x的位置,其根据是与牛顿假设时间相对应的通用演化参数τ的运动方程。这个参数的广泛性使我们可以为相对论多体系统编写经典动力学和量子动力学方程。在这个框架中,还发展了相应的相对论明显的协变量子场论。 -
初等数学研究在中国 第5辑杨学枝《初等数学研究在中国.第5辑》旨在汇聚中小学数学教育教学和初等数学研究的新成果,给读者提供学习与交流的平台,促进中小学数学教育教学和初等数学研究水平的提高。《初等数学研究在中国.第5辑》适合大、中学师生阅读,也可供数学爱好者参考研读。 -
小波分析基础李新,陈发来《小波分析基础:从理论到应用》详细介绍小波变换的起源、原理和应用, 内容覆盖傅里叶变换、窗口傅里叶变换、框架理论、连续小波变换、多分辨率分析、Daubechies小波分析基础:从理论到应用小波分析基础:从理论到应用正交小波、小波包、小波提升理论以及小波在信号处理和图像处理等方面的应用, 涵盖了发展比较成熟的小波分析的所有基本内容. 另外, 《小波分析基础:从理论到应用》特别关注实际应用和数学理论之间的关联, 强调解决实际问题中的数学原理以及解决问题所需要的数学思维和方法. -
数学论文写作背后的教学故事吕增锋本书为甬城教育名家论丛出版项目(一套七册)之一,作者结合其多年教学研究经验体会以及其公开发表在各级各类刊物上的二十余篇论文,分九个方面讲述论文写作背后的教学故事,语言生动而朴实,在讲故事中传播教学理念,在丰富的教学案例中阐释教育理论与教学原理。通过阅读本书,读者不仅能够知道数学应该如何教,而且也领悟到教学论文写作的要领。本书具有以下特点:1.具有很强的生动性与可读性;2.寓教育思想与教学故事中;3.适合青年教师阅读。
