书籍详情
深海耐压球壳基础理论和关键技术(英文版)
作者:王芳 等 著
出版社:上海科学技术出版社
出版时间:2022-11-01
ISBN:9787547857526
定价:¥190.00
购买这本书可以去
内容简介
本书以“深海耐压球壳基础理论和关键技术”为题,对深海耐压球壳的设计制造和分析技术的研究背景和发展、影响深海耐压球壳强度和长期使用安全性的基础理论和关键技术,以及对深海耐压球壳考核验证和数值仿真方法进行了详细介绍,着重阐释了基于耐压球壳备选材料综合性能的选材标准、耐压球壳线性和非线性屈曲理论基础及计算方法,以及用于耐压球壳蠕变疲劳寿命预报的裂纹扩展率模型。 在此基础上,对深海耐压球壳的评价、试验和仿真方法的经验积累进行了总结。其中,团队创新性提出的考虑保持载荷效应的小时间域裂纹扩展模型、超高强度钢耐压舱极限承载能力评估模型、覆盖全海深的耐压舱设计与分析系统,填补了国内外相关研究的空白,拓展了深海装备前沿技术的理论体系,具有重要的学术价值。
作者简介
王芳:副研究员,硕士生导师。上海海洋大学深渊科学与技术研究中心副主任;国际期刊《Ocean Engineering》副主编;国际船舶与海洋工程结构大会(International Ship and Offshore Structures Congress)委员;上海市青年科技人才协会理事;中国船舶力学学会委员。主要从事载人潜水器安全性评估技术、船舶与海洋结构物疲劳性能、船舶与海洋结构物极限强度等方向的研究工作。获第十届无锡市优秀科技工作者、2011-2012年度无锡市五一巾帼标兵、第十八届“浦东新区十大杰出青年”等荣誉。近几年参与撰写英文专著1部(获国家科学技术学术著作出版基金资助),参编英文专著5部、中文专著1部。在国内外重要期刊发表学术论文99篇。参与撰写专利15项。论文入选 “中国造船工程学会优秀学术论文”“领P者5000-中国竞聘科技期刊D尖学术论文”。获上海市科技进步奖二等奖1项、浦东新区科技进步奖一等奖1项、中国造船工程学会科学技术奖二等奖1项。主持和参研国家J和省部级项目十余项。 张建:江苏科技大学教授,上海海洋大学兼职教授。江苏科技大学船舶与海工装备数字化设计研究所所长,江苏省优秀科技创新团队《深海异形耐压装备智能制造》带头人。主要从事深海耐压装备设计与制造的理论和方法研究,开展了壳体抗压评估与承载力提升、结构仿生设计、开孔与孔端封闭等方面的基础研究,提出了深海球形耐压壳极限承载能力预报模型、卵形缺陷球壳和蛋形耐压壳仿生设计方法。获江苏省优秀青年基金获得者、江苏省333工程中青年学术带头人、江苏省六大人才高峰高层次人才、江苏省科协托举青年科技人才、江苏省企业创新岗特聘专家、镇江市有突出贡献的中青年专家。第一或通讯发表SCI 25篇(ESI高被引1篇)、EI 15篇、北大核心19篇;第一作者出版学术专著3部;第一发明人获中国发明专利35件、国际发明专利6件,转让14件。主要完成人获得省部级科技进步二等奖3项、三等奖2项、专利奖4项。主持国家J项目3项、省部级项目4项、其他课题11项。 陈峰落:同济大学国家海底科学观测系统项目办公室工程师。主要从事深海载人潜水器耐压结构设计与制造,及大型海洋工程平台结构设计和运输安装。曾负责11000m马氏体镍钢载人舱设计及6000m钛合金载人舱设计及制造,并承担过多个大型海工程洋平台设计及运输安装项目。在内国外核心期刊上发表论文5篇,其中SCI2篇,EI 2篇,会议论文1篇,论文入选 “中国造船工程学会优秀学术论文”。参与撰写专利19项,已授权专利12项。
目录
Chapter 1 General Introduction of Deep-sea Spherical Pressure Hulls 1
1.1Application scenario of deep-sea spherical pressure hulls 2
1.2 The design methodology of deep-sea pressure hull 6
1.2.1 Shape selection 6
1.2.2 Material selection 8
1.2.3 Hull thickness requirement based on the depth limit and safety factor 9
1.2.4 End closures design compatible with the hull and design requirement 9
1.3 Other considerations to ensure safety 10
1.3.1 Reliability 10
1.3.2 Fatigue and fracture 12
1.3.3 Model test 14
1.3.4 Seal design 16
1.4 Manufacturing process of deep-sea pressure hulls 17
References 21
Chapter 2 Material Selection for Deep-sea Spherical Pressure Hulls 23
2.1 Candidate materials for deep-sea spherical pressure hulls 24
2.1.1 Steels 26
2.1.2 Aluminium alloys 28
2.1.3 Titanium alloys 28
2.1.4 Acrylic plastics (polymethyl methacrylate) 29 2.1.5
Composites 30
2.2 Practice for material selection 31
2.2.1 Selection of titanium alloys 33
2.2.2 Selection of maraging steels 44
References 50
Chapter 3 Linear Buckling Mechanics of Deep-sea Spherical Pressure Hulls 53
3.1 Overview of current rules for spherical pressure hulls 53
3.1.1 Introduction of rules 53
3.1.2 Comparison of rules 59
3.2 Analytical analysis 62
3.2.1 Strength evaluation 62
3.2.2 Stability evaluation 69
3.3 Numerical analysis 76
3.3.1 Brief introduction of FEM principle 76
3.3.2 Numerical study of different methods 82
References 92
Chapter 4 Nonlinear Buckling of Deep-sea Spherical Pressure Hulls 94
4.1 Overview of current studies 94
4.1.1 Empirical formulae 94
4.1.2 Phenomenological models 104
4.2 Elastic-plastic buckling analysis 107
4.2.1 Titanium alloy spherical pressure hulls 107
4.2.2 Maraging steel spherical pressure hulls 124
4.3 Experimental study in laboratory scale 127
4.3.1 Materials and methods 128
4.3.2 Results and discussion 132
References 143
Chapter 5 Fatigue Life Assessment Theory for Deep-sea Spherical Pressure Hulls 146
5.1 Analysis methods for fatigue of spherical pressure hulls 147
5.1.1 Loading history of the spherical pressure hull 148
5.1.2 Low-cycle fatigue theory based on strain-cycles curve 152
5.1.3 Methods based on crack growth theory 158
5.1.4 A simplified life estimation method 185 References 192
Chapter 6 Testing and Numerical Simulation of Deep-sea Spherical Pressure Hulls 195
6.1 Verification testing 197
6.1.1 Ultimate compression-carrying capacity testing for scale model 198
6.1.2 Hydrostatic pressure testing for viewports 207
6.1.3 Function testing for hatch-cover opening and closing mechanism 209
6.2 Inspection testing 210
6.2.1 Material properties testing 210
6.2.2 Geometrical size measurement 213
6.3 Acceptance testing 214
6.3.1 Leakage testing 214
6.3.2 Hydrostatic pressure testing 215
6.4 Numerical Simulation 216
6.4.1 Structural strength calculation of the deep-sea spherical pressure hull using FEA method 216
6.4.2 Numerical simulation on collapse of the deep-sea spherical pressure hull 221
6.4.3 The simulation of transient dynamic process of crushing 226
References 233
1.1Application scenario of deep-sea spherical pressure hulls 2
1.2 The design methodology of deep-sea pressure hull 6
1.2.1 Shape selection 6
1.2.2 Material selection 8
1.2.3 Hull thickness requirement based on the depth limit and safety factor 9
1.2.4 End closures design compatible with the hull and design requirement 9
1.3 Other considerations to ensure safety 10
1.3.1 Reliability 10
1.3.2 Fatigue and fracture 12
1.3.3 Model test 14
1.3.4 Seal design 16
1.4 Manufacturing process of deep-sea pressure hulls 17
References 21
Chapter 2 Material Selection for Deep-sea Spherical Pressure Hulls 23
2.1 Candidate materials for deep-sea spherical pressure hulls 24
2.1.1 Steels 26
2.1.2 Aluminium alloys 28
2.1.3 Titanium alloys 28
2.1.4 Acrylic plastics (polymethyl methacrylate) 29 2.1.5
Composites 30
2.2 Practice for material selection 31
2.2.1 Selection of titanium alloys 33
2.2.2 Selection of maraging steels 44
References 50
Chapter 3 Linear Buckling Mechanics of Deep-sea Spherical Pressure Hulls 53
3.1 Overview of current rules for spherical pressure hulls 53
3.1.1 Introduction of rules 53
3.1.2 Comparison of rules 59
3.2 Analytical analysis 62
3.2.1 Strength evaluation 62
3.2.2 Stability evaluation 69
3.3 Numerical analysis 76
3.3.1 Brief introduction of FEM principle 76
3.3.2 Numerical study of different methods 82
References 92
Chapter 4 Nonlinear Buckling of Deep-sea Spherical Pressure Hulls 94
4.1 Overview of current studies 94
4.1.1 Empirical formulae 94
4.1.2 Phenomenological models 104
4.2 Elastic-plastic buckling analysis 107
4.2.1 Titanium alloy spherical pressure hulls 107
4.2.2 Maraging steel spherical pressure hulls 124
4.3 Experimental study in laboratory scale 127
4.3.1 Materials and methods 128
4.3.2 Results and discussion 132
References 143
Chapter 5 Fatigue Life Assessment Theory for Deep-sea Spherical Pressure Hulls 146
5.1 Analysis methods for fatigue of spherical pressure hulls 147
5.1.1 Loading history of the spherical pressure hull 148
5.1.2 Low-cycle fatigue theory based on strain-cycles curve 152
5.1.3 Methods based on crack growth theory 158
5.1.4 A simplified life estimation method 185 References 192
Chapter 6 Testing and Numerical Simulation of Deep-sea Spherical Pressure Hulls 195
6.1 Verification testing 197
6.1.1 Ultimate compression-carrying capacity testing for scale model 198
6.1.2 Hydrostatic pressure testing for viewports 207
6.1.3 Function testing for hatch-cover opening and closing mechanism 209
6.2 Inspection testing 210
6.2.1 Material properties testing 210
6.2.2 Geometrical size measurement 213
6.3 Acceptance testing 214
6.3.1 Leakage testing 214
6.3.2 Hydrostatic pressure testing 215
6.4 Numerical Simulation 216
6.4.1 Structural strength calculation of the deep-sea spherical pressure hull using FEA method 216
6.4.2 Numerical simulation on collapse of the deep-sea spherical pressure hull 221
6.4.3 The simulation of transient dynamic process of crushing 226
References 233
猜您喜欢