书籍详情
基于流体力学的金属增材制造过程仿真研究(英文版第二版)
作者:李辉 著
出版社:电子工业出版社
出版时间:2022-09-01
ISBN:9787121434211
定价:¥100.00
购买这本书可以去
内容简介
本书针对金属增材制造加工过程进行了系统研究,基于计算流体动力学方法研究金属增材制造工艺过程中的流体问题。第一章为绪论。第二章至第四章研究金属增材制造打印机腔体内部流场及颗粒分布特性,并设计了新颖的流体罩和负压管对打印机腔体内部流场优化以及溅射颗粒清除。第五章至第九章主要研究金属增材制造加工过程中熔池特性,其中第五章研究了金属熔池动力学特性,第六章研究了外加磁场对金属增材制造过程中熔池以及凝固过程的影响,第七章和第八章研究了金属增材制造过程中工件内部单气孔缺陷和多气孔缺陷的演化过程。第九章研究金属增材制造工件激光清洗工艺,以控制工件表面粗糙度。 本次主要修订了技术内容的专业描述,更新了部分结果。
作者简介
李辉,中共党员,教授、博导,湖北省特聘专家,***青年****”入选者,国家重点研发计划项目首席科学家,IEEE高级会员。作者于1995年至2002年就读于华中科技大学机械科学与工程学院,获得工学学士与硕士学位。作者于2002年获得新加坡科研局博士奖学金,在新加坡国立大学(NUS)电子与计算机系和新加坡数据存储研究所(DSI)进行博士学位的联合培养,师从于新加坡数据存储研究所高级研究科学家(Senior research scientist)刘波博士(国家****”特聘专家,教育部长江学者讲座教授)和新加坡国立大学电子与计算机工程系教授Chong Tow Chong(现任新加坡理工大学(SUTD)校长),并于2007年获得工学博士学位。作者于2008年进入美国加州大学圣地亚哥分校(UCSD)从事博士后研究,师从于UCSD机械和科学工程学院前主席、磁记录中心首席教授Frank E. Talke院士。作者于2005年至2013年就职于日立公司(Hitachi)亚洲研究与发展中心,其中于2006年在日立总部中央研究所交流半年,2008年起担任研发中心项目领导及副经理。在新加坡、日本和美国长达11年的学习和科研工作经历,主攻磁记录硬盘可靠性研究,实现微机电系统的高精度定位控制设计和应用。作者主持完成与美国美国加州大学圣地亚哥分校,新加坡数据存储研究所和日立日本本部的联合科研项目7项。作者2012年入选国际电器与电子工程师学会(IEEE)高级会员,2013年入选***青年****”,获聘为武汉大学教授、博士生导师,2014年被授予湖北省特聘专家称号。作者主要从事先进制造工艺过程、在线监测及产品可靠性等研究,发表SCI期刊论文80余篇、国际会议论文60余篇,在美国、新加坡、韩国做特邀报告4次。主编英文专著2部、中文专著1部,获国家科学技术学术著作出版基金资助1次。提交/授权国家发明专利41项、授权软件著作权3项。作者承担科研项目包括国家自然科学基金委重大科研仪器研制项目(教育部唯一推荐)、国家重点研发计划增材制造与激光制造”重点专项、国家重点研发计划网络协同制造和智能工厂”重点专项(首席)、JKW基础加强项目、湖北省技术创新专项(重大项目)、广东省重点领域研发计划、四川省重点研发计划、广东省科技创新战略专项资金自由申请项目、深圳市基础研究计划项目、深圳市协同创新计划国际合作研究项目、华为公司技术咨询报告等。
目录
Chapter 1 Introduction\t1
1.1 Background\t2
1.2 Motivation\t3
1.3 Outline\t4
Chapter 2 Investigation of the flow field in Laser-based Powder Bed Fusion
manufacturing\t5
2.1 Introduction\t7
2.2 Simulation model of the L-PBF printer\t10
2.2.1 Problem description\t10
2.2.2 Geometric model of the L-PBF printer\t11
2.2.3 Numerical model of the L-PBF printer\t12
2.3 Simulation results\t16
2.3.1 Distribution of the flow field\t16
2.3.2 Distribution of the temperature field\t21
2.3.3 Distribution of spatter particles\t23
2.4 Conclusions\t28
References\t30
Chapter 3 Investigation of optimizing the flow field with fluid cover in
Laser-based Powder Bed Fusion manufacturing process\t33
3.1 Introduction\t35
3.2 Simulation model of L-PBF printer\t37
3.2.1 Geometry of L-PBF printer with a fluid stabilizing cover\t37
3.2.2 Numerical model of printer with a fluid stabilizing cover\t37
3.2.3 Mesh of L-PBF printer with a fluid stabilizing cover\t39
3.2.4 Model of the fluid stabilizing cover and particles\t40
3.3 Simulation results and discussion\t43
3.3.1 Influence of the fluid stabilizing cover on the flow field\t43
3.3.2 Influence of fluid stabilizing cover on particle distribution and removing rate\t47
3.4 Summary and conclusions\t51
References\t53
Chapter 4 Numerical investigation of controlling spatters with negative pressure
pipe in Laser-based Powder Bed Fusion process\t54
4.1 Introduction\t56
4.2 Simulation model of L-PBF printer\t59
4.2.1 Geometric model of L-PBF printer\t59
4.2.2 Numerical model of L-PBF printer\t61
4.3 Simulation results and discussions\t64
4.3.1 Effect of pipe diameter\t68
4.3.2 Effect of outlet flow rate\t70
4.3.3 Effect of initial particle velocity\t74
4.4 Summary and conclusions\t76
References\t78
Chapter 5 Evolution of molten pool during Laser-based Powder Bed Fusion of
Ti-6Al-4V\t80
5.1 Introduction\t82
5.2 Modeling approach and numerical simulation\t85
5.2.1 Model establishing and assumptions\t85
5.2.2 Governing equations\t87
5.2.3 Heat source model\t87
5.2.4 Phase change\t88
5.2.5 Boundary conditions setup\t89
5.2.6 Mesh generation\t90
5.3 Experimental procedures\t91
5.4 Results and discussions\t92
5.4.1 Surface temperature distribution and morphology\t92
5.4.2 Formation and solidification of the molten pool\t94
5.4.3 Development of the evaporation region\t98
5.5 Conclusions\t101
References\t103
Chapter 6 Simulation of surface deformation control during Laser-based
Powder Bed Fusion Al-Si-10Mg powder using an external magnetic field\t107
6.1 Introduction\t109
6.2 Modeling and simulation\t112
6.2.1 Modeling of L-PBF\t112
6.2.2 Mesh model and basic assumptions\t113
6.2.3 Heat transfer conditions\t114
6.2.4 Marangoni convection\t115
6.2.5 Phase-change material\t115
6.2.6 Lorentz force\t116
6.3 Results\t118
6.3.1 Velocity field in the molten pool\t118
6.3.2 Lorentz force in the MP\t121
6.3.3 Surface deformation of the sample\t123
6.4 Conclusions\t127
References\t128
Chapter 7 Influence of laser post- processing on pore evolution of Ti-6Al-4V
alloy by Laser-based Powder Bed Fusion\t131
7.1 Introduction\t133
7.2 Experimental procedures\t136
7.2.1 Sample fabrication\t136
7.2.2 Determination of porosity by micro-CT\t137
7.3 Modeling and simulation\t140
7.3.1 Numerical model\t140
7.3.2 Moving Gaussian heat source\t143
7.3.3 Thermal boundary conditions\t143
7.3.4 Marangoni effect, surface tension and recoil pressure\t144
7.4 Numerical results and discussion\t145
7.5 Conclusions\t152
References\t153
Chapter 8 Evolution of multi pores in Ti-6Al-4V/Al-Si-10Mg alloy during laser
post-processing\t157
8.1 Introduction\t159
8.2 Experimental procedures\t162
8.2.1 Sample preparation\t162
8.2.2 Detection of porosity by mirco-CT\t162
8.3 Model and simulation\t165
8.3.1 Simulation model\t165
8.3.2 Gaussian heat source\t167
8.3.3 Latent heat of phase change\t168
8.3.4 Level-set method\t169
8.3.5 Boundary conditions\t169
8.4 Numerical results and discussion\t171
8.5 Conclusions\t177
References\t179
Chapter 9 Investigation of laser polishing of four Laser-based Powder Bed
Fusion alloy samples\t182
9.1 Introduction\t184
9.2 Model and theoretical calculation\t188
9.2.1 Physical model and assumptions\t188
9.2.2 Governing equations and boundary conditions\t190
9.2.3 Simulation results\t192
9.3 Experimental methods\t195
9.3.1 Sample fabrication\t195
9.3.2 Morphology observation by 3D optical profiler\t198
9.3.3 Experimental results\t199
9.4 Conclusions\t206
References\t208
1.1 Background\t2
1.2 Motivation\t3
1.3 Outline\t4
Chapter 2 Investigation of the flow field in Laser-based Powder Bed Fusion
manufacturing\t5
2.1 Introduction\t7
2.2 Simulation model of the L-PBF printer\t10
2.2.1 Problem description\t10
2.2.2 Geometric model of the L-PBF printer\t11
2.2.3 Numerical model of the L-PBF printer\t12
2.3 Simulation results\t16
2.3.1 Distribution of the flow field\t16
2.3.2 Distribution of the temperature field\t21
2.3.3 Distribution of spatter particles\t23
2.4 Conclusions\t28
References\t30
Chapter 3 Investigation of optimizing the flow field with fluid cover in
Laser-based Powder Bed Fusion manufacturing process\t33
3.1 Introduction\t35
3.2 Simulation model of L-PBF printer\t37
3.2.1 Geometry of L-PBF printer with a fluid stabilizing cover\t37
3.2.2 Numerical model of printer with a fluid stabilizing cover\t37
3.2.3 Mesh of L-PBF printer with a fluid stabilizing cover\t39
3.2.4 Model of the fluid stabilizing cover and particles\t40
3.3 Simulation results and discussion\t43
3.3.1 Influence of the fluid stabilizing cover on the flow field\t43
3.3.2 Influence of fluid stabilizing cover on particle distribution and removing rate\t47
3.4 Summary and conclusions\t51
References\t53
Chapter 4 Numerical investigation of controlling spatters with negative pressure
pipe in Laser-based Powder Bed Fusion process\t54
4.1 Introduction\t56
4.2 Simulation model of L-PBF printer\t59
4.2.1 Geometric model of L-PBF printer\t59
4.2.2 Numerical model of L-PBF printer\t61
4.3 Simulation results and discussions\t64
4.3.1 Effect of pipe diameter\t68
4.3.2 Effect of outlet flow rate\t70
4.3.3 Effect of initial particle velocity\t74
4.4 Summary and conclusions\t76
References\t78
Chapter 5 Evolution of molten pool during Laser-based Powder Bed Fusion of
Ti-6Al-4V\t80
5.1 Introduction\t82
5.2 Modeling approach and numerical simulation\t85
5.2.1 Model establishing and assumptions\t85
5.2.2 Governing equations\t87
5.2.3 Heat source model\t87
5.2.4 Phase change\t88
5.2.5 Boundary conditions setup\t89
5.2.6 Mesh generation\t90
5.3 Experimental procedures\t91
5.4 Results and discussions\t92
5.4.1 Surface temperature distribution and morphology\t92
5.4.2 Formation and solidification of the molten pool\t94
5.4.3 Development of the evaporation region\t98
5.5 Conclusions\t101
References\t103
Chapter 6 Simulation of surface deformation control during Laser-based
Powder Bed Fusion Al-Si-10Mg powder using an external magnetic field\t107
6.1 Introduction\t109
6.2 Modeling and simulation\t112
6.2.1 Modeling of L-PBF\t112
6.2.2 Mesh model and basic assumptions\t113
6.2.3 Heat transfer conditions\t114
6.2.4 Marangoni convection\t115
6.2.5 Phase-change material\t115
6.2.6 Lorentz force\t116
6.3 Results\t118
6.3.1 Velocity field in the molten pool\t118
6.3.2 Lorentz force in the MP\t121
6.3.3 Surface deformation of the sample\t123
6.4 Conclusions\t127
References\t128
Chapter 7 Influence of laser post- processing on pore evolution of Ti-6Al-4V
alloy by Laser-based Powder Bed Fusion\t131
7.1 Introduction\t133
7.2 Experimental procedures\t136
7.2.1 Sample fabrication\t136
7.2.2 Determination of porosity by micro-CT\t137
7.3 Modeling and simulation\t140
7.3.1 Numerical model\t140
7.3.2 Moving Gaussian heat source\t143
7.3.3 Thermal boundary conditions\t143
7.3.4 Marangoni effect, surface tension and recoil pressure\t144
7.4 Numerical results and discussion\t145
7.5 Conclusions\t152
References\t153
Chapter 8 Evolution of multi pores in Ti-6Al-4V/Al-Si-10Mg alloy during laser
post-processing\t157
8.1 Introduction\t159
8.2 Experimental procedures\t162
8.2.1 Sample preparation\t162
8.2.2 Detection of porosity by mirco-CT\t162
8.3 Model and simulation\t165
8.3.1 Simulation model\t165
8.3.2 Gaussian heat source\t167
8.3.3 Latent heat of phase change\t168
8.3.4 Level-set method\t169
8.3.5 Boundary conditions\t169
8.4 Numerical results and discussion\t171
8.5 Conclusions\t177
References\t179
Chapter 9 Investigation of laser polishing of four Laser-based Powder Bed
Fusion alloy samples\t182
9.1 Introduction\t184
9.2 Model and theoretical calculation\t188
9.2.1 Physical model and assumptions\t188
9.2.2 Governing equations and boundary conditions\t190
9.2.3 Simulation results\t192
9.3 Experimental methods\t195
9.3.1 Sample fabrication\t195
9.3.2 Morphology observation by 3D optical profiler\t198
9.3.3 Experimental results\t199
9.4 Conclusions\t206
References\t208
猜您喜欢