书籍详情
高等数学(理工类 第4版 上)
作者:暂缺
出版社:安徽大学出版社
出版时间:2020-11-01
ISBN:9787566421289
定价:¥55.00
购买这本书可以去
内容简介
本书第3版被列为普通高等教育“十二五”本科国家级规划教材。本书主要介绍函数、极限与连续、导数与微分等内容。本书不仅介绍微积分的基础知识,更重要的是传授现代数学思想,培养学生的科学思维和创新意识,提高学生应用数学的能力。同时,为了使教材的使用面更加广泛,编者根据不同专业对数学的不同需求,在编写时充分考虑理论与应用、经典与现代、知识与能力等内容的定位,使用不同的记号显示其相应内容,使得教材内容符合学生的实际,并针对学生已有的基础和将来专业面临的方向突出应用,同时留给学生适度的自学和研究空间。
作者简介
暂缺《高等数学(理工类 第4版 上)》作者简介
目录
第1章 函数
1.1 集合
1.2 函数
1.3 函数的几种特性
1.4 复合函数
1.5 参数方程、极坐标与复数
第1章习题
第2章 极限与连续
2.1 数列的极限
2.2 函数的极限
2.3 两个重要极限
2.4 无穷小量与无穷大量
2.5 函数的连续性
2.6 闭区间上连续函数的性质
第2章习题
第3章 导数与微分
3.1 导数的概念
3.2 导数的运算法则
3.3 初等函数的求导问题
3.4 高阶导数
3.5 函数的微分
3.6 高阶微分
第3章习题
第4章 微分中值定理及其应用
4.1 微分中值定理
4.2 L'Hospital法则
4.3 Taylor公式
4.4 函数的单调性与极值
4.5 函数的凸性和曲线的拐点、渐近线
4.6 平面曲线的曲率
第4章习题
第5章 不定积分
5.1 不定积分的概念与性质
5.2 换元积分法
5.3 分部积分法
5.4 几种特殊类型函数的不定积分
第5章习题
第6章 定积分
6.1 定积分的概念
6.2 定积分的性质与中值定理
6.3 微积分基本公式
6.4 定积分的换元法与分部积分法
6.5 定积分的近似计算
6.6 广义积分
第6章习题
第7章 定积分的应用
7.1 微元法的基本思想
7.2 定积分在几何上的应用
7.3 定积分在物理上的应用
第7章习题
第8章 微分方程
8.1 微分方程的基本概念
8.2 几类简单的微分方程
8.3 一阶微分方程
8.4 二阶常系数线性微分方程
8.5 常系数线性微分方程组
第8章习题
附录1 常用初等数学公式
附录2 常用几何曲线图示
1.1 集合
1.2 函数
1.3 函数的几种特性
1.4 复合函数
1.5 参数方程、极坐标与复数
第1章习题
第2章 极限与连续
2.1 数列的极限
2.2 函数的极限
2.3 两个重要极限
2.4 无穷小量与无穷大量
2.5 函数的连续性
2.6 闭区间上连续函数的性质
第2章习题
第3章 导数与微分
3.1 导数的概念
3.2 导数的运算法则
3.3 初等函数的求导问题
3.4 高阶导数
3.5 函数的微分
3.6 高阶微分
第3章习题
第4章 微分中值定理及其应用
4.1 微分中值定理
4.2 L'Hospital法则
4.3 Taylor公式
4.4 函数的单调性与极值
4.5 函数的凸性和曲线的拐点、渐近线
4.6 平面曲线的曲率
第4章习题
第5章 不定积分
5.1 不定积分的概念与性质
5.2 换元积分法
5.3 分部积分法
5.4 几种特殊类型函数的不定积分
第5章习题
第6章 定积分
6.1 定积分的概念
6.2 定积分的性质与中值定理
6.3 微积分基本公式
6.4 定积分的换元法与分部积分法
6.5 定积分的近似计算
6.6 广义积分
第6章习题
第7章 定积分的应用
7.1 微元法的基本思想
7.2 定积分在几何上的应用
7.3 定积分在物理上的应用
第7章习题
第8章 微分方程
8.1 微分方程的基本概念
8.2 几类简单的微分方程
8.3 一阶微分方程
8.4 二阶常系数线性微分方程
8.5 常系数线性微分方程组
第8章习题
附录1 常用初等数学公式
附录2 常用几何曲线图示
猜您喜欢