书籍详情
数学世纪:过去100年间30个重大问题
作者:[意] 皮耶尔乔治·奥迪弗雷迪 著,胡作玄 等 译
出版社:上海科学技术出版社
出版时间:2021-06-01
ISBN:9787547853320
定价:¥48.00
购买这本书可以去
内容简介
这本薄薄的小册子,内容却很丰富。作者为了吸引读者眼球,选择了一种阐述方式,对现代数学思想的根源、脉络及展望交代得非常清楚,兼顾纯理论和应用数学,读起来感到轻松自然、获益匪浅。本书突出了这些特点:20世纪几乎不再有通晓全部数学的大数学家,1900年的数学家大会,希尔伯特的23个问题为整个数学的发展指明了前进的方向;20世纪30年代布尔巴基所倡导的结构数学是20世纪数学的主流和核心;数学在物理学、经济学、计算机科学方面的得到重要应用,并相互促进。
作者简介
奥迪弗雷迪(P.Odifreddi),意大利数学家,著名科普作家,生于1950年,都灵大学数理逻辑教授,曾多年担任康奈尔大学访问教授,著有《经典递归论》以及多部科普著作。
目录
译者序
前言
致谢
导论1
第1章基础6
1.11920年代: 集合8
1.21940年代: 结构12
1.31960年代: 范畴 15
1.41980年代: 函数18
第2章纯粹数学21
2.1数学分析: 勒贝格测度(1902)25
2.2代数: 施泰尼茨对域的分类(1910)29
2.3拓扑学: 布劳威尔的不动点定理(1910)32
2.4数论: 盖尔芳德的超越数(1929)35
2.5逻辑: 哥德尔的不完全性定理(1931)39
2.6变分法: 道格拉斯的极小曲面(1931)43
2.7数学分析: 施瓦兹的广义函数论(1945)47
2.8微分拓扑: 米尔诺的怪异结构(1956)51
2.9模型论: 鲁宾逊的超实数(1961)54
2.10集合论: 科恩的独立性定理(1963)58
2.11奇点理论: 托姆对突变的分类(1964)61
2.12代数: 高林斯坦的有限群分类(1972)66
2.13拓扑学: 瑟斯顿对三维曲面的分类(1982)72
2.14数论: 怀尔斯证明费马大定理(1995)76
2.15离散几何: 黑尔斯解决开普勒问题(1998)81
第3章应用数学85
3.1结晶学: 比伯巴赫的对称群(1910)90
3.2张量演算: 爱因斯坦的广义相对论(1915)96
3.3博弈论: 冯·诺伊曼的极小极大定理(1928)99
3.4泛函分析: 冯·诺伊曼对量子力学的公理化(1932)
102
3.5概率论: 柯尔莫哥洛夫的公理化(1933)106
3.6优化理论: 丹齐格的单纯形法(1947)110
3.7一般均衡理论: 阿罗德布鲁存在性定理(1954)
112
3.8形式语言理论: 乔姆斯基的分类(1957)115
3.9动力系统理论: KAM定理(1962)118
3.10纽结理论: 琼斯的不变量(1984)122
第4章数学与计算机127
4.1算法理论: 图灵的刻画(1936)132
4.2人工智能: 香农对国际象棋对策的分析(1950)135
4.3混沌理论: 劳伦茨的奇怪吸引子(1963)138
4.4计算机辅助证明: 阿佩尔与哈肯的四色定理(1976)
140
4.5分形分析: 芒德布罗集(1980)145
第5章未解问题149
5.1数论: 完美数问题(公元前300年)151
5.2复分析: 黎曼假设(1859)153
5.3代数拓扑: 庞加莱猜想(1904)157
5.4复杂性理论: P=NP问题(1972)161
结束语165
参考文献170
索引172
译后记185
前言
致谢
导论1
第1章基础6
1.11920年代: 集合8
1.21940年代: 结构12
1.31960年代: 范畴 15
1.41980年代: 函数18
第2章纯粹数学21
2.1数学分析: 勒贝格测度(1902)25
2.2代数: 施泰尼茨对域的分类(1910)29
2.3拓扑学: 布劳威尔的不动点定理(1910)32
2.4数论: 盖尔芳德的超越数(1929)35
2.5逻辑: 哥德尔的不完全性定理(1931)39
2.6变分法: 道格拉斯的极小曲面(1931)43
2.7数学分析: 施瓦兹的广义函数论(1945)47
2.8微分拓扑: 米尔诺的怪异结构(1956)51
2.9模型论: 鲁宾逊的超实数(1961)54
2.10集合论: 科恩的独立性定理(1963)58
2.11奇点理论: 托姆对突变的分类(1964)61
2.12代数: 高林斯坦的有限群分类(1972)66
2.13拓扑学: 瑟斯顿对三维曲面的分类(1982)72
2.14数论: 怀尔斯证明费马大定理(1995)76
2.15离散几何: 黑尔斯解决开普勒问题(1998)81
第3章应用数学85
3.1结晶学: 比伯巴赫的对称群(1910)90
3.2张量演算: 爱因斯坦的广义相对论(1915)96
3.3博弈论: 冯·诺伊曼的极小极大定理(1928)99
3.4泛函分析: 冯·诺伊曼对量子力学的公理化(1932)
102
3.5概率论: 柯尔莫哥洛夫的公理化(1933)106
3.6优化理论: 丹齐格的单纯形法(1947)110
3.7一般均衡理论: 阿罗德布鲁存在性定理(1954)
112
3.8形式语言理论: 乔姆斯基的分类(1957)115
3.9动力系统理论: KAM定理(1962)118
3.10纽结理论: 琼斯的不变量(1984)122
第4章数学与计算机127
4.1算法理论: 图灵的刻画(1936)132
4.2人工智能: 香农对国际象棋对策的分析(1950)135
4.3混沌理论: 劳伦茨的奇怪吸引子(1963)138
4.4计算机辅助证明: 阿佩尔与哈肯的四色定理(1976)
140
4.5分形分析: 芒德布罗集(1980)145
第5章未解问题149
5.1数论: 完美数问题(公元前300年)151
5.2复分析: 黎曼假设(1859)153
5.3代数拓扑: 庞加莱猜想(1904)157
5.4复杂性理论: P=NP问题(1972)161
结束语165
参考文献170
索引172
译后记185
猜您喜欢