书籍详情
泛函分析:巴拿赫空间理论入门(英文)
作者:[美] 特里·J.莫里森 著
出版社:哈尔滨工业大学出版社
出版时间:2021-03-01
ISBN:9787560389448
定价:¥48.00
购买这本书可以去
内容简介
本书主要包括巴拿赫空间的基本定义和举例、巴拿赫空间应用的基本原则、弱拓扑及其应用、巴拿赫空间中的算子、共轭算子、巴拿赫空间的基础、一些特殊空间的基础、基本挑选原则、巴拿赫空间中的序列和几何学、菲利普斯引理等内容。希望读者通过研究本书中介绍的思想和技巧,遵循本书介绍的许多结果所指示的方向,帮助读者对巴拿赫大部分的工作和遗产所蕴含的美丽和微妙之处有更深入的了解,也希望本书可以令读者对这种丰富的数学领域产生赞赏和理解之情。本书适合于对巴拿赫空间感兴趣的学者或数学爱好者参考阅读。
作者简介
暂缺《泛函分析:巴拿赫空间理论入门(英文)》作者简介
目录
Preface
Introduction
Notation and Conventions
Products and the Product Topology
Finite-Dimensional Spaces and Riesz's Lemma
The Daniell Integral
1.Basic Definitions and Examples
1.1 Examples of Banach Spaces
1.2 Examples and Calculation of Dual Spaces
2.Basic Principles with Applications
2.1 The Hahn-BanachTheorem
2.2 The Banach-SteinhausTheorem
2.3 The Open-Mapping and Closed-Graph Theorems
2.4 Applications of the Basic Principles
3.Weak Topologies and Applications
3.1 Convex Sets and Minkowski Functionals
3.2 Dual Systems and Weak Topologies
3.3 Convergence and Compactness in Weak Topologies
3.4 The Krein-MilmanTheorem
4.Operators on Banach Spaces
4.1 Preliminary Facts and Linear Projections
4.2 Adjoint Operators
4.3 Weakly Compact Operators
4.4 Compact Operators
4.5 The Riesz-Schauder Theory
4.6 Strictly Singular and Strictly Cosingular Operators
4.7 Reflexivity and Factoring Weakly Compact Operators
5.Bases in Banach Spaces
5.1 Introductory Concepts
5.2 Bases in Some Special Spaces
5.3 Equivalent Bases and Complemented Subspaces
5.4 Basic Selection Principles
6.Sequences, Series, and a Little Geometry in Banach Spaces
6.1 Phillips' Lemma
6.2 Special Bases and Reflexivity in Banach Spaces
6.3 Unconditionally Converging and Dunford-Pettis Operators
6.4 Support Functionals and Convex Sets
6.5 Convexity and the Differentiability of Norms
Bibliography
Author/Name Index
Subject Index
Symbol Index
编辑后记
Introduction
Notation and Conventions
Products and the Product Topology
Finite-Dimensional Spaces and Riesz's Lemma
The Daniell Integral
1.Basic Definitions and Examples
1.1 Examples of Banach Spaces
1.2 Examples and Calculation of Dual Spaces
2.Basic Principles with Applications
2.1 The Hahn-BanachTheorem
2.2 The Banach-SteinhausTheorem
2.3 The Open-Mapping and Closed-Graph Theorems
2.4 Applications of the Basic Principles
3.Weak Topologies and Applications
3.1 Convex Sets and Minkowski Functionals
3.2 Dual Systems and Weak Topologies
3.3 Convergence and Compactness in Weak Topologies
3.4 The Krein-MilmanTheorem
4.Operators on Banach Spaces
4.1 Preliminary Facts and Linear Projections
4.2 Adjoint Operators
4.3 Weakly Compact Operators
4.4 Compact Operators
4.5 The Riesz-Schauder Theory
4.6 Strictly Singular and Strictly Cosingular Operators
4.7 Reflexivity and Factoring Weakly Compact Operators
5.Bases in Banach Spaces
5.1 Introductory Concepts
5.2 Bases in Some Special Spaces
5.3 Equivalent Bases and Complemented Subspaces
5.4 Basic Selection Principles
6.Sequences, Series, and a Little Geometry in Banach Spaces
6.1 Phillips' Lemma
6.2 Special Bases and Reflexivity in Banach Spaces
6.3 Unconditionally Converging and Dunford-Pettis Operators
6.4 Support Functionals and Convex Sets
6.5 Convexity and the Differentiability of Norms
Bibliography
Author/Name Index
Subject Index
Symbol Index
编辑后记
猜您喜欢