书籍详情
异方差模型的统计推断
作者:徐登可,张忠占,吴刘仓 著
出版社:科学出版社
出版时间:2021-01-01
ISBN:9787030677105
定价:¥88.00
购买这本书可以去
内容简介
《异方差模型的统计推断》系统地介绍了双重广义线性模型等异方差回归模型的理论、方法和应用。内容主要包括:高维数据下双重广义线性模型的变量选择研究,纵向数据下均值-协方差模型的变量选择和贝叶斯分析,半参数异方差模型的变量选择和贝叶斯分析,偏正态异方差模型的异方差检验和贝叶斯分析,半参数混合效应双重回归模型的贝叶斯分析,以及双重Logistic回归模型在妊娠期高血压疾病危险因素分析中的具体应用。
作者简介
暂缺《异方差模型的统计推断》作者简介
目录
目录
第1章 绪论 1
1.1 模型 2
1.1.1 线性回归模型 2
1.1.2 双重广义线性回归模型 3
1.1.3 均值-协方差模型 6
1.1.4 半参数回归模型 8
1.1.5 半参数均值-方差模型 10
1.2 变量选择方法 11
1.2.1 子集选择法 11
1.2.2 系数压缩法 13
第2章 高维数据下双重广义线性模型的变量选择 17
2.1 引言 17
2.2 变量选择过程 19
2.2.1 基于惩罚伪似然的变量选择 19
2.2.2 渐近性质 20
2.2.3 迭代计算 21
2.3 模拟研究 24
2.4 定理的证明 28
2.5 小结 34
第3章 纵向数据下均值-协方差模型 35
3.1 变量选择 35
3.1.1 引言 35
3.1.2 均值-协方差模型的变量选择 36
3.1.3 渐近性质 38
3.1.4 迭代计算 39
3.1.5 模拟研究 41
3.1.6 定理的证明 45
3.1.7 小结 48
3.2 贝叶斯分析 48
3.2.1 引言 48
3.2.2 均值-协方差模型 49
3.2.3 JMVMs的贝叶斯分析 51
3.2.4 模拟研究 53
3.2.5 实际数据分析 55
3.2.6 小结 58
第4章 半参数异方差模型 59
4.1 变量选择过程 59
4.1.1 引言 59
4.1.2 半参数异方差模型的变量选择 60
4.1.3 渐近性质 62
4.1.4 迭代计算 63
4.1.5 模拟研究 65
4.1.6 实际数据分析 70
4.1.7 定理的证明 72
4.1.8 小结 78
4.2 贝叶斯分析 78
4.2.1 引言 78
4.2.2 半参数均值-方差模型的贝叶斯分析 80
4.2.3 模拟研究 83
4.2.4 实际数据分析 87
4.2.5 小结 89
第5章 偏正态异方差模型 90
5.1 异方差检验 90
5.1.1 引言 90
5.1.2 模型和估计 91
5.1.3 方差齐性的 score 检验 95
5.1.4 模型研究 97
5.1.5 定理的证明 105
5.1.6 小结 109
5.2 贝叶斯分析 109
5.2.1 引言 109
5.2.2 偏正态分布下联合位置尺度非线性模型 110
5.2.3 参数的先验信息 111
5.2.4 Gibbs 抽样和条件分布 111
5.2.5 贝叶斯推断 113
5.2.6 模拟研究 113
5.2.7 实际数据分析 117
5.2.8 小结 118
第6章 半参数混合效应双重回归模型 119
6.1 引言 119
6.2 半参数混合效应双重回归模型 120
6.3 半参数混合效应双重回归模型的贝叶斯分析 121
6.3.1 非参数函数的 B 样条逼近 121
6.3.2 参数的先验分布 122
6.3.3 Gibbs抽样和条件分布 122
6.3.4 贝叶斯推断 124
6.4 模拟研究 125
6.5 实际数据分析 135
6.6 小结 137
第7章 双重Logistic回归模型 138
7.1 引言 138
7.2 模型及变量选择方法 139
7.2.1 双重Logistic回归模型 139
7.2.2 算法 140
7.3 数据分析 141
7.4 小结 145
参考文献 147
索引 158
第1章 绪论 1
1.1 模型 2
1.1.1 线性回归模型 2
1.1.2 双重广义线性回归模型 3
1.1.3 均值-协方差模型 6
1.1.4 半参数回归模型 8
1.1.5 半参数均值-方差模型 10
1.2 变量选择方法 11
1.2.1 子集选择法 11
1.2.2 系数压缩法 13
第2章 高维数据下双重广义线性模型的变量选择 17
2.1 引言 17
2.2 变量选择过程 19
2.2.1 基于惩罚伪似然的变量选择 19
2.2.2 渐近性质 20
2.2.3 迭代计算 21
2.3 模拟研究 24
2.4 定理的证明 28
2.5 小结 34
第3章 纵向数据下均值-协方差模型 35
3.1 变量选择 35
3.1.1 引言 35
3.1.2 均值-协方差模型的变量选择 36
3.1.3 渐近性质 38
3.1.4 迭代计算 39
3.1.5 模拟研究 41
3.1.6 定理的证明 45
3.1.7 小结 48
3.2 贝叶斯分析 48
3.2.1 引言 48
3.2.2 均值-协方差模型 49
3.2.3 JMVMs的贝叶斯分析 51
3.2.4 模拟研究 53
3.2.5 实际数据分析 55
3.2.6 小结 58
第4章 半参数异方差模型 59
4.1 变量选择过程 59
4.1.1 引言 59
4.1.2 半参数异方差模型的变量选择 60
4.1.3 渐近性质 62
4.1.4 迭代计算 63
4.1.5 模拟研究 65
4.1.6 实际数据分析 70
4.1.7 定理的证明 72
4.1.8 小结 78
4.2 贝叶斯分析 78
4.2.1 引言 78
4.2.2 半参数均值-方差模型的贝叶斯分析 80
4.2.3 模拟研究 83
4.2.4 实际数据分析 87
4.2.5 小结 89
第5章 偏正态异方差模型 90
5.1 异方差检验 90
5.1.1 引言 90
5.1.2 模型和估计 91
5.1.3 方差齐性的 score 检验 95
5.1.4 模型研究 97
5.1.5 定理的证明 105
5.1.6 小结 109
5.2 贝叶斯分析 109
5.2.1 引言 109
5.2.2 偏正态分布下联合位置尺度非线性模型 110
5.2.3 参数的先验信息 111
5.2.4 Gibbs 抽样和条件分布 111
5.2.5 贝叶斯推断 113
5.2.6 模拟研究 113
5.2.7 实际数据分析 117
5.2.8 小结 118
第6章 半参数混合效应双重回归模型 119
6.1 引言 119
6.2 半参数混合效应双重回归模型 120
6.3 半参数混合效应双重回归模型的贝叶斯分析 121
6.3.1 非参数函数的 B 样条逼近 121
6.3.2 参数的先验分布 122
6.3.3 Gibbs抽样和条件分布 122
6.3.4 贝叶斯推断 124
6.4 模拟研究 125
6.5 实际数据分析 135
6.6 小结 137
第7章 双重Logistic回归模型 138
7.1 引言 138
7.2 模型及变量选择方法 139
7.2.1 双重Logistic回归模型 139
7.2.2 算法 140
7.3 数据分析 141
7.4 小结 145
参考文献 147
索引 158
猜您喜欢