书籍详情
随机过程及其在金融中的应用
作者:冯玲,方杰 著
出版社:中国人民大学出版社
出版时间:2020-10-01
ISBN:9787300285658
定价:¥45.00
购买这本书可以去
内容简介
本书由12章组成,主要分为三大部分:随机过程基础、随机分析概论和金融中的应用。第一部分随机过程基础是本书的基础部分,主要介绍了随机过程的预备知识、离散时间马氏链、可数状态马氏链、泊松过程、连续时间马氏链等内容;第二部分随机分析概论是第一部分内容的深化,主要包括布朗运动、鞅、随机积分概论和随机微分方程概论等内容;第三部分则是第二部分内容的进一步深化,着重介绍前面所学知识在金融中的应用,主要介绍了金融市场及其数学基础、连续时间下的期权定价和期权定价的离散模型等内容。为适应应用型本科突出技能与应用的要求,本书的内容在介绍随机过程基础理论的前提下,着重使用图表等多种形式,形象地展示课程的脉络。在介绍部分难以理解的知识点时,本书附有相关的Matlab软件代码,读者可通过运行这些代码,更加形象地理解相关的知识点。对于复杂的数学推导,本书一律放到章节的附录中,以供学有余力的读者参考学习。为了突出随机过程在金融中的应用这一重要主题,书中所举的相关例子和课后习题,很多具有很强的金融应用背景。本书适用于金融工程、数学与应用数学、金融学、统计学等本科专业2-3年级学生。
作者简介
冯玲,福州大学经济与管理学院教授、博士生导师,研究方向为金融工程和风险管理。2018年度入选第三批福建省哲学社会科学领军人才。近年来主持国家自然科学基金项目2项,国家教育部人文社科基金项目1项,福建省社科规划重大项目1项,福建省科技厅重点项目2项,福建省社科规划项目2项。在《金融研究》《系统工程理论与实践》等核心期刊上发表学术论文20多篇,被SCI、EI收录多篇,出版专著2本。获福建省社会科学优秀成果三等奖2次。
目录
第一部分 随机过程基础
第一章 预备知识 3
第一节 事件与概率 3
第二节 随机变量和随机向量 7
第三节 随机变量的数字特征 10
第四节 随机变量的收敛性 17
第五节 随机过程的概念 20
第二章 离散时间马氏链 23
第一节 定义和例子 23
第二节 多步转移概率 28
第三节 状态的分类 33
第四节 平稳分布 47
第五节 极限行为 57
第六节 离出分布和离出时间 62
第七节 本章附录 68
第三章 可数状态马氏链 79
第一节 状态的分类 79
第二节 分支过程 81
第三节 本章附录 84
第四章 泊松过程 88
第一节 指数分布 88
第二节 泊松分布 94
第三节 泊松过程 97
第四节 泊松过程的扩展 104
第五节 本章附录 109
第五章 连续时间马氏链 115
第一节 定义和例子 115
第二节 转移概率 121
第三节 极限行为 125
第四节 嵌入链 130
第二部分 随机分析概论
第六章 布朗运动 141
第一节 随机游走 142
第二节 布朗运动及其性质 145
第三节 布朗运动的首中时刻 149
第四节 反射原理与布朗运动的最大值 152
第五节 马氏过程 154
第六节 布朗运动的变化形式 155
第七节 本章附录 159
第七章 鞅 166
第一节 条件期望 167
第二节 鞅的概念和性质 168
第三节 可选抽样定理 177
第八章 随机积分概论 184
第一节 普通积分回顾 184
第二节 随机积分的构造 186
第三节 伊藤积分的性质 187
第四节 伊藤引理. 192
第五节 本章附录 204
第九章 随机微分方程概论 213
第一节 引言 213
第二节 线性随机微分方程的分类 216
第三节 线性随机微分方程的求解 217
第四节 本章附录 223
第三部分 金融中的应用
第十章 金融市场及其数学基础 229
第一节 金融市场的相关概念 229
第二节 无套利原理 234
第三节 市场的完备性和状态价格 237
第四节 风险中性和测度变换 242
第五节 本章附录 249
第十一章 连续时间下的期权定价 251
第一节 期权的价格分析 251
第二节 期权与标的资产的对冲 252
第三节 期权定价的偏微分方程法 254
第四节 期权的风险中性定价法 256
第五节 Black-Scholes模型的不足及拓展 261
第六节 本章附录 264
第十二章 期权定价的离散模型 269
第一节 单期二项式模型 269
第二节 多期二项式模型 273
第三节 CRR模型 279
第四节 本章附录 281
参考文献 289
第一章 预备知识 3
第一节 事件与概率 3
第二节 随机变量和随机向量 7
第三节 随机变量的数字特征 10
第四节 随机变量的收敛性 17
第五节 随机过程的概念 20
第二章 离散时间马氏链 23
第一节 定义和例子 23
第二节 多步转移概率 28
第三节 状态的分类 33
第四节 平稳分布 47
第五节 极限行为 57
第六节 离出分布和离出时间 62
第七节 本章附录 68
第三章 可数状态马氏链 79
第一节 状态的分类 79
第二节 分支过程 81
第三节 本章附录 84
第四章 泊松过程 88
第一节 指数分布 88
第二节 泊松分布 94
第三节 泊松过程 97
第四节 泊松过程的扩展 104
第五节 本章附录 109
第五章 连续时间马氏链 115
第一节 定义和例子 115
第二节 转移概率 121
第三节 极限行为 125
第四节 嵌入链 130
第二部分 随机分析概论
第六章 布朗运动 141
第一节 随机游走 142
第二节 布朗运动及其性质 145
第三节 布朗运动的首中时刻 149
第四节 反射原理与布朗运动的最大值 152
第五节 马氏过程 154
第六节 布朗运动的变化形式 155
第七节 本章附录 159
第七章 鞅 166
第一节 条件期望 167
第二节 鞅的概念和性质 168
第三节 可选抽样定理 177
第八章 随机积分概论 184
第一节 普通积分回顾 184
第二节 随机积分的构造 186
第三节 伊藤积分的性质 187
第四节 伊藤引理. 192
第五节 本章附录 204
第九章 随机微分方程概论 213
第一节 引言 213
第二节 线性随机微分方程的分类 216
第三节 线性随机微分方程的求解 217
第四节 本章附录 223
第三部分 金融中的应用
第十章 金融市场及其数学基础 229
第一节 金融市场的相关概念 229
第二节 无套利原理 234
第三节 市场的完备性和状态价格 237
第四节 风险中性和测度变换 242
第五节 本章附录 249
第十一章 连续时间下的期权定价 251
第一节 期权的价格分析 251
第二节 期权与标的资产的对冲 252
第三节 期权定价的偏微分方程法 254
第四节 期权的风险中性定价法 256
第五节 Black-Scholes模型的不足及拓展 261
第六节 本章附录 264
第十二章 期权定价的离散模型 269
第一节 单期二项式模型 269
第二节 多期二项式模型 273
第三节 CRR模型 279
第四节 本章附录 281
参考文献 289
猜您喜欢