书籍详情

有限单元法:基本原理及其在土木水利机械和航天工程中的应用(精)

有限单元法:基本原理及其在土木水利机械和航天工程中的应用(精)

作者:朱伯芳 著

出版社:清华大学出版社

出版时间:2020-06-01

ISBN:9787302542650

定价:¥198.00

购买这本书可以去
内容简介
  本书系统地阐述了有限单元法的基本原理及其在工程问题中的应用,包括弹性力学平面问题和空间问题、薄板、薄壳、厚板、厚壳、弹性稳定、塑性力学、大位移、断裂、动力反应、徐变、岩土力学、混凝土与钢筋混凝土、流体力学、热传导、工程反分析、仿真计算、网络自动生成、误差估计及自适应技术。该书内容丰富、取材新颖,概念清晰,可供土木、水利、机械、航空、力学专业的设计、科研人员使用,并可用做高等院校有关专业的教材。
作者简介
  朱伯芳,中国工程院院士,1951年毕业于上海交通大学土木系后,参加我国首批三座大坝设计,1957年调至中国水科院,1995年当选院士,发表论文210篇出版著作10本,曾获国家自然科学奖1项,国家科技进步奖2项。国际大坝会议奖1项,部奖8项,建立了混凝土温度应力,拱坝优化等新学科。首次把有限元引入混凝土温度应力和水坝仿真计算。
目录
Preface i 
About the Author iii 
1  Introduction to Finite Element Method and Matrix Analysis of Truss 1 
1.1  IntroductiontoFiniteElementMethod 1 
1.2  TrussAnalysisOverview 5 
1.3  Sti.nessMatrixofHorizontalBarElement 8 
1.4  Sti.nessMatrixofInclinedBarElement 10 
1.5  CoordinateTransformation 11 
1.6  NodalEquilibriumEquationandGlobalSti.nessMatrix 14 
1.7  TreatmentofBoundaryConditions 15 Bibliography 23 
2  Plane Problems in Theory of Elasticity 25 
2.1  DiscretizationofContinuousMedium 25 
2.2  DisplacementFunction 28 
2.3  ElementStrain 30 
2.4  InitialStrain 31 
2.5  ElementStress 32 
2.5.1  IsotropicBody:PlaneStress 32 
2.5.2  IsotropicBody:PlaneStrain 33 
2.5.3  AnisotropicBody 34 
2.6  EquivalentNodalForceandElementSti.nessMatrix 35 
2.7  NodalLoads 40 
2.7.1  EquivalentNodalLoadsofDistributedBoundaryForces 41 
2.7.2  NodalLoadsofUniformVolumeForce 41 
2.7.3  NodalLoadsDuetoPotentialofVolumeForce 42 
2.7.4  NodalLoadsCausedbyInitialStrain 43 
2.8  NodalEquilibriumEquationandGlobalSti.nessMatrix 43 
2.9  EstablishtheGlobalSti.nessMatrixbytheCodingMethod 48 
2.10  CalculationExample 51 
2.10.1  StressConcentrationneartheCircularHole 51 
2.10.2  StressAnalysisofIBeamwithaHoleinWeb 51 
2.10.3  StressAnalysisoftheConcreteGravityDam 51 Bibliography 51 
3  Element Analysis 53 
3.1  PrincipleofVirtualDisplacement 53 
3.2  ElementDisplacement 56 
3.3  ElementStrainandStress 57 
3.4  NodalForceandElementSti.nessMatrix 57 
3.5  NodalLoad 59 
3.5.1  DistributedVolumeForce 60 
3.5.2  DistributedSurfaceForce 60 
3.5.3  InitialStrainandInitialStress 61 
3.6  ApplicationExamplesofthePrincipleofVirtualDisplacements:BeamElement 61 
3.7  StrainEnergyandComplementaryStrainEnergy 64 
3.8  PrincipleofMinimumPotentialEnergy 65 
3.9  MinimumComplementaryEnergyPrinciple 69 
3.10  HybridElement 70 
3.11  HybridElementExample:PlaneRectangularElement 73 
3.12  MixedEnergyPrinciple 75 
3.13  CompositeElement 77 Bibliography 79 
4  Global Analysis 81 
4.1  NodalEquilibriumEquation 81 
4.2  ApplicationofthePrincipleofMinimumPotentialEnergy 82 
4.3  TheLowLimitPropertyoftheSolutionofMinimumPotentialEnergy 84 
4.4  TheConvergenceofSolutions 85 
4.5  AnalysisoftheSubstructure 88 
4.5.1  MultipleSubstructures 89 
4.5.2  CondensationoftheInternalDegreesofFreedomofSubstructures 90 
4.5.3  CoordinateTransformation 90 Bibliography 91 
5  High-Order Element of Plane Problem 93 
5.1  RectangularElements 93 
5.2  AreaCoordinates 97 
5.3  High-OrderTriangularElement 100 
5.3.1  6-NodeQuadraticTriangularElement 100 
5.3.2  10-Node3-OrderTriangularElement 101 
5.3.3  3-Node18DOFTriangularElement 102 Bibliography 104 
6  Axisymmetrical Problems in Theory of Elasticity 105 
6.1  StressesDuetoAxisymmetricalLoads 105 
6.1.1  DisplacementFunction 105 
6.1.2  ElementStrains 106 
6.1.3  ElementStress 108 
6.1.4  ElementSti.nessMatrix 109 
6.1.5  NodalLoads 110 
6.2  AntisymmetricalLoad 110 Bibliography 114 
7  Spatial Problems in Theory of Elasticity 115 
7.1  ConstantStrainTetrahedralElements 115 
7.1.1  DisplacementFunction 115 
7.1.2  ElementStrain 117 
7.1.3  ElementStress 118 
7.1.4  Sti.nessMatrixoftheElement 119 
7.1.5  NodalLoad 120 
7.2  VolumeCoordinates 121 
7.3  High-OrderTetrahedralElements 122 
7.3.1  10-NodeLinearStrainTetrahedralElements 122 
7.3.2  20-NodeTetrahedralElement 123 Bibliography 124 
8  Shape Function, Coordinate Transformation, Isoparametric Element, and In.nite Element 125 
8.1  De.nitionofShapeFunctions 125 
8.2  One-DimensionalShapeFunctions 126 
8.3  Two-DimensionalShapeFunction 127 
8.4  Three-DimensionalShapeFunction 130 
8.5  CoordinateTransformation 136 
8.5.1  PlaneCoordinateTransformation 142 
8.5.2  SpatialCoordinateTransformation 144 
8.6  DisplacementFunction 145 
8.7  ElementStrain 147 
8.8  Sti.nessMatrix 151 
8.9  NodalLoads 153 
8.10  DegradationofIsoparametricElements 155 
8.10.1  Degradationof4-NodePlaneIsoparametricElements 155 
8.10.2  Degradationofan8-NodeSpaceIsoparametricElement 158 
8.10.3  DegradationofHigh-OrderElements 160 
8.11  NumericalIntegration 161 
8.11.1  One-DimensionalGaussQuadratureFormula 162 
8.11.2  Two-DimensionalandThree-DimensionalGaussQuadrature Formulas 163 
8.12  SelectionoftheNumericalIntegrationOrder 164 
8.12.1  ConditionsforNonsingularityoftheGlobalSti.nessMatrix[K] 164 
8.12.2  IntegralOrderEnsuringtheCalculationPrecision 165 
8.12.3  ReducedIntegrationandSelectedIntegration 167 
8.13  StressRe.nementandStressSmoothing 168 
8.13.1  StressRe.nement 168 
8.13.2  StressSmoothing 169 
8.14  ElementalFormandLayout 173 
8.14.1  E.ectoftheElementalShapeonStrain 173 
8.14.2  E.ectofEdgeNodeSpacingonStrain 175 
8.14.3  Intensi.cationofComputingMeshofIsoparametricElements 175 
8.15  InconsistentElements 176 
8.16  PatchTest 179 
8.17  Triangular,Tetrahedral,andPrismaticCurved-SideElements 183 
8.18  VectorComputationinIsoparametricElements 187 
8.18.1  DirectionCosine 188 
8.18.2  ScalarProduct 188 
8.18.3  VectorProduct 188 
8.18.4  In.nitesimalAreainCurvilinearCoordinateSystem 189 
8.18.5  In.nitesimalAreaofSpatialCurvedSurface 190 
8.18.6  SpatialIn.nitesimalVolumes 191 
8.19  NumericalExamplesofIsoparametricElements 191 
8.20  In.niteElements 192 
8.20.1  Two-DimensionalIn.niteElements 192 
8.20.2  Three-DimensionalIn.niteElements 196 Bibliography 199 
9  Comparison and Application Instances of Various Planar and Spatial Elements 201 
9.1  ComparisonandSelectionofVariousPlanarElements 201 
9.2  ComparisonandSelectionofVariousSpatialElements 205 
9.3  AnalysisofStressesinArchDam 209 
9.3.1  ComparisonofDi.erentComputationMethods 210 
9.3.2  TheE.ectofFoundationDeformationontheDisplacementandStressofArchDam 212 
9.4  AnalysisofStressinButtressDam 215 
9.5  AnalysisofSpatialE.ectofGravityDam 217 
9.6  AnalysisofSpatialE.ectofEarthDam 217 
9.7  AnalysisofStressonTunnelLining 220 Bibliography 221 
10  Elastic Thin Plate 223 
10.1  BendingofElasticThinPlate 223 
10.2  RectangularThinPlateElement 228 
10.2.1  DisplacementFunction 229 
10.2.2  Sti.nessMatrix 231 
10.2.3  NodalLoad 232 
10.2.4  Example 233 
10.2.4.1  SquareThinPlateSupportedbyFourEdges 233 
10.2.4.2  SquareThinPlateSupportedbyCornerPoints 233 
10.3  TriangularThinPlateElement 235 
10.3.1  DisplacementFunction 235 
10.3.2  Sti.nessMatrixandNodalLoad 238 
10.3.3  SmoothingCurvature 238 
10.3.4  Example 239 
10.3.4.1  TheSquarePlateBearingConcentratedandDistributedLoads 239 
10.3.4.2  TheDistortionoftheSquarePlate 239 
10.4  PlateElementwithCurvedBoundaryandDe.ectionandRotationDe.nedRespectively 241 
10.4.1  BeamElementConsideringtheShearingDeformation 241 
10.4.2  CurvedPlateElementwiththeDe.ectionandRotationInterpolatedRespectively 245 
10.5  ThePlateonElasticFoundation 248 
10.5.1  PlateonWinklerFoundation 248 
10.5.2  PlateonElasticHalfSpace 249 Bibliography 252 
11  Elastic Thin Shell 255 
11.1  ElementSti.nessMatrixinLocalCoordinateSystem 255 
11.2  CoordinateTransformation:GlobalSti.nessMatrix 259 
11.3  DirectionCosineofLocalCoordinate 261 
11.4  Curved-SurfaceShellElement 264 
11.5  ShellSupportedorReinforcedbyCurvedBeam 268 
11.6  Example 271 Bibliography 271 
12  Axisymmetric Shell 273 
12.1  LinearElement 273 
12.2  CurvedElement 277 Bibliography 280 
13  Problems in Fluid Mechanics 281 
13.1  RelationbetweenStressandStrainforNewtonianFluids 281 
13.1.1  Stress–StrainRelationsforSolids 281 
13.1.2  Stress–RateandStrainRelationsforFluid 282 
13.2  EquationofMotion 283 
13.3  ContinuityEquation 284 
13.4  EnergyEquation 284 
13.5  StateandViscosityEquations 284 
13.6  FundamentalEquationsforSteadySeepageFlowandTheirDiscretization 285 
13.6.1  GeneralizedDarcyLaw 285 
13.6.2  FundamentalEquations 287 
13.6.3  DiscretizationoftheProblems 287 
13.7  FreeSurfaceCalculationforSeepageAnalysis 290 
13.7.1  MethodofMeshRevision 290 
13.7.2  MethodofRevisionoftheConductivityMatrix 290 
13.7.3  ResidualVelocityMethod 291 
13.7.4  InitialVelocityMethod 294 
13.8  SubstitutionoftheCurtainofDrainageHolesbytheSeepingLayerforSeepageAnalysis 296 
13.9  UnsteadySeepageFlow 300 
13.10  DynamicWaterPressureduringEarthquake 301 
13.11  InviscidFluidFlowFormulatedbyPotentialFunction Φ 303 
13.11.1  BasicEquations 303 
13.11.2  TheFlowaroundObjectswithoutLift 306 
13.11.3  TheFlowaroundObjectswithLift 307 
13.12  PotentialFlowFormulatedbyStreamFunction .. 307 
13.12.1  BasicEquations 307 
13.12.2  TheFlowaroundObjectswithoutLift 308 
13.12.3  TheFlowaroundObjectswithLift 310 
13.13  FlowontheFreeSurface 312 
13.14  ViscousandNon-NewtonianFlow 316 
13.14.1  SolutionoftheStokesEquation 316 
13.14.2  SolutionoftheNavier–StokesEquations 317 
Bibliography 318 
14  Problems in Conduction of Heat in Solids 321 
14.1  Di.erentialEquation:InitialandBoundaryConditionsforConductionofHeatinSolids 321 
14.2  VariationalPrincipleforConductionofHeatinSolids 322 
14.2.1  Euler’sEquation 322 
14.2.2  VariationalPrincipleofProblemofHeatConduction 322 
14.3  DiscretizationofContinuousBody 323 
14.4  FundamentalEquationsforSolvingUnsteadyTemperatureFieldby
FEM 324 
14.5  Two-DimensionalUnsteadyTemperatureField,TriangularElements 327 
14.6  IsoparametricElements 329 
14.6.1  Two-DimensionalIsoparametricElements 329 
14.6.2  Three-DimensionalIsoparametricElements 331 
14.7  ComputingExamplesofUnsteadyTemperatureField 331 
14.8  TemperatureFieldofMassConcretewithPipeCooling 332 
14.8.1  ConcreteCylinderCooledbyWaterPipe 332 
14.8.2  MassConcreteCooledbyWaterPipe 334 
14.8.3  MassConcreteCooledbyWaterPipewithPrecise ..(..) 334 
Bibliography 335 
15  Methods for Nonlinear Finite Element Analysis 337 
15.1  IncrementalMethod 338 
15.1.1  MethodofStartingPointSti.ness 338 
15.1.2  MethodofMidpointSti.ness 339 
15.2  IterativeMethod 342 
15.2.1  DirectIterativeMethod 342 
15.2.2  NewtonMethod 343 
15.2.3  Modi.edNewtonMethod 344 
15.2.4 Quasi-NewtonMethod 345 
15.2.5  TheCalculationof {Ψn} andInitialStressMethodandInitialStrain Method 347 
15.3  MixedMethod 349 
15.4  ApplicationofSubstructureMethodinNonlinearAnalysis 349 Bibliography 351 
16  Problems in Theory of Plasticity 353 
16.1  One-DimensionalStress–StrainRelation 353 
16.2  DecomposeofStressTensorandStressInvariant 355 
16.3  Haigh–WestergaardStressSpace 357 
16.3.1  GeometricCharacteristicsofStressSpace 357 
16.3.1.1  TheHydrostaticStressAxis 357 
16.3.1.2  .. Plane 358 
16.3.1.3  Line L′ ParalleltotheLine L 358 
16.3.1.4  ThePlaneParallelto .. Plane 358 
16.3.2  TheGeometricExpressionofAnyPoint 358 
16.3.3  PrincipalStresses 361 
16.4  DecomposeofStrainTensor 362 
16.5  CriterionofYield 363 
16.5.1  TrescaYieldCriterion 364 
16.5.2  MisesYieldCriterion 365 
16.5.3  Mohr–CoulombYieldCriterion 367 
16.5.4  Drucker–PragerYieldCriterion 368 
16.5.5  LadeYieldCriterion 370 
16.5.6  Bresler–PisterYieldCriterion 370 
16.5.7  OttosenYieldCriterion 371 
16.5.8  Hsieh–Ting–ChenFour-ParameterCriterion 371 
16.5.9  Mohr–CoulombCriterionwiththeMaximumTensileStress 372 
16.5.10  Willam–WarnkeCriterionwithThreeandFiveParameters 373 
16.5.10.1  Willam–WarnkeCriterionwithThreeParameters 374 
16.5.10.2  Willam–WarnkeCriterionwithFiveParameters 376 
16.5.11  Zhang–LuYieldCriterion 378 
16.6  StrainHardening 379 
16.6.1  IsotropicStrainHardeningModel 380 
16.6.2  FlowingStrainHardeningModel 381 
16.6.3  MixedStrainHardeningModel 381 
16.7  CriterionofLoadingandUnloading 382 
16.7.1  LoadingandUnloadingofIdealPlasticMaterial 382 
16.7.2  LoadingandUnloadingofStrainHardenedMaterials 382 
16.7.3  StrainSoftening,BrittleFailure,andResidualStrength 383 
16.8  TheFiniteElementMethodinElastic–PlasticIncrementalTheory 384 
16.8.1  TheElastoplasticMatrixofIncrementalTheory 384 
16.8.2  SymmetricExpressionofNonassociatedElastic–PlasticSti.nessMatrix 386 {}
..F
16.8.3  TheCalculationof 387 
.... 
16.8.4  E.ectiveStress,E.ectivePlasticStrain,andCalculationof ..F/.... 389 
16.8.4.1  TheE.ectiveStress ..i 389 
16.8.4.2  TheE.ectivePlasticStrain ..i 389 
16.8.4.3  TheCalculationof ..F/.... 390 
16.8.5  SingularPointsontheYieldSurface 391 
16.8.6  NumericalCalculationMethod 392 
16.8.6.1  TheDisplacementIncrement 392 
16.8.6.2  TentativeStress 392 
16.8.6.3  TheScaleFactor 393 
16.8.6.4  ThePlasticStressIncrement 394 
16.8.6.5  StressBacktotheYieldSurface 395 
16.8.6.6  CalculationSteps 396 
16.8.7  Example 396 
16.9  FiniteElementMethodintheFullVariableTheoryofPlasticity 397 
16.9.1  BasicAssumptionofFullVariableTheory 397 
16.9.2  TheStress–StrainRelationshipofYiliuxin 398 
16.9.3  TheElastic–PlasticMatrixofFullVariableTheory 399 
16.10  PracticalSimpli.edModelsforNonlinearProblemofMaterial 399 
16.10.1  IsotropicModelContainingOne-VariableModulus E(t) 400 
16.10.2  IsotropicModelContainingTwo-VariableModulus K(t)and G(t) 400 
16.10.3  OrthotropicModelandtheEquivalentUniaxialStrain 401 
16.10.3.1  OrthotropicConstitutiveRelations 401 
16.10.3.2  EquivalentUniaxialStrain 403 
16.10.4  TheApproximateCalculationofStrainSoftening 404 Bibliography 404 
17  Creep of Concrete and its In.uence on Stresses and Deformations of Structures 407 
17.1  Stress–StrainRelationofConcrete 407 
17.1.1  Stress–StrainRelationofConcreteunderActionofStressinOne Direction 408 
17.1.2  Stress–StrainRelationUnderComplexStressConditions 411 
17.1.3  ModulusofElasticityofConcrete E(.. ) 413 
17.1.4  UnitCreepofConcrete 414 
17.1.5  FormulaforPreliminaryDesign 416 
17.2  In.uenceofCreeponStressesandDeformationsofLinearElastocreepingBody 416 
17.3  AnalysisofElastocreepingStressesofConcreteStructure 419 
17.3.1  TheCalculationofStrainIncrementunderUniaxialStress 420 
17.3.1.1  TheElasticStrainIncrement 420 
17.3.1.2  TheIncrementofCreepStrainWhen C(t,..)= ..(..)[1. e.r(t . .. )] 420 
∑ 
.rj(t . .. )]
17.3.1.3  TheIncrementofCreepStrainWhen C(t,..)= ..j(.. )[1. e422 
17.3.2  TheCalculationofStrainIncrementsunderComplexStressConditions 423 
17.3.3  EquilibriumEquations 423 
17.4  CompoundLayerElementfortheSimulationAnalysisofConcreteDams 424 Bibliography 429 
18  Stress Analysis for Viscoelastic and Visco-Plastic Bodies 431 
18.1  TheStress–StrainRelationofViscoelasticBodyundertheActionofUnidirectionalStress 431 
18.1.1  TheStress–StrainRelationofIdealElasticBody(HookeBody) 431 
18.1.2  TheStress–StrainRelationofIdealPlasticBody:TheDashpot 431 
18.1.3  MaxwellBody 431 
18.1.4  KelvinBody 432 
18.1.5  Standardthree-ComponentViscoelasticBody 433 
18.1.6  KelvinChain 433 
18.1.7  TheStress–StrainRelationWhenStressChangeswithTime 434 
18.2  TheStress–StrainRelationundertheActionofComplexStresses 434 
18.2.1  TheStress–StrainRelationWhenPoisson’sRatioIsConstant 434 
18.2.2  Di.erentLawforVolumeDeformationandShearDeformation 435 
18.3  StressAnalysisofViscoelasticBody 436 
18.3.1  StressAnalysisofViscoelasticBodywithConstantPoisson’sRatio 437 
18.3.2  StressAnalysisofViscoelasticBodywithDi.erentLawsforVolumeDeformationandShearDeformation 437 
18.4  E.ectiveModulusMethodandEquivalentTemperatureMethodforSimpleHarmonicTemperatureCreepStressAnalysisofConcreteatLateAgesandViscoelasticBody 439 
18.5  StressAnalysisforVisco-PlasticBodies 441 
18.5.1  Viscoelastic–PlasticProblemsunderActionofOne-Dimensional Stress 441 
18.5.2  Viscoelastic–PlasticProblemswithComplexStressStates 444 
18.5.3  Visco-PlasticStrainIncrement 446 
18.5.4  StressAnalysisofViscoelastic–PlasticBodies 446 
18.5.5  TheChoiceofTimeInterval Δtn 448 
18.6  CombinedViscoelastic–PlasticModels 449 Bibliography 451 
19  Elastic Stability Problem 453 
19.1  GeometricalSti.nessMatrixoftheBeamElement 453 
19.2  GeometricalSti.nessMatrixofPlateElements 457 
19.3  GlobalAnalysis 459 
19.4  CasesofBeamSystem 461 
19.5  ComputingExamplesofElasticStabilityofThinPlateSystem 462 
19.5.1  RectangularThin-PlateElement 462 
19.5.2  TriangularThin-PlateElements 464 Bibliography 465 
20  Problems in Analysis of Structures with Large Displacement 467 
20.1  TheBasicMethodforGeometricalNonlinearProblems 467 
20.1.1  BasicFormulas 467 
20.1.2  TheSolution 469 
20.1.3  TheElasticStabilityProblem 470 
20.2  ThePlateElementofLargeDe.ection 471 
20.3  Three-DimensionalSolidElementofLargeDisplacement 476 
20.4  DoubleNonlinearity:ElastoplasticLargeDisplacementProblem 478 Bibliography 478 
21  Problems in Fracture Mechanics 481 
21.1  Introduction 481 
21.2  DirectMethod 484 
21.2.1  DisplacementMethod 484 
21.2.2  StressMethod 486 
21.3  J-Integral Method 486 
21.4  EnergyMethod,FlexibilityMethod,andBuecknerFormula 490 
21.4.1  EnergyReleaseRate G andtheRelatedFormulas 490 
21.4.2  FlexibilityMethod 491 
21.4.3  EnergyMethod 492 
21.4.4  BuecknerFormula 492 
21.5  Sti.nessDerivativeMethod 494 
21.5.1  PlaneProblem 494 
21.5.2  AxialSymmetricalProblem 495 
21.5.3  SpaceProblem 497 
21.6  SingularElementoftheCrackTip 499 
21.6.1  TriangularSingularElement 499 
21.6.2  CircleSingularElement 500 
21.6.3  HybridSingularElement 500 
21.7  SingularIsoparametricElement(1/4LengthMidpointMethod) 502 
21.7.1  RectangularSingularIsoparametricElement 502 
21.7.2  TriangularDegeneratedSingularIsoparametricElement 503 
21.8  BluntCrackZoneModel 506 
21.9  Elastic–PlasticFracture 509 
21.10  ExtendedFiniteElementMethodforFractureAnalysis 512 Bibliography 514 
22  Problems in Structural Dynamics 515 
22.1  EquationsofMotion 515 
22.2  MassMatrix 516 
22.2.1  ConsistentMassMatrix 517 
22.2.2  LumpedMassMatrix 517 
22.2.3  SeveralTypicalElementMassMatrices 518 
22.2.3.1  BeamElement 518 
22.2.3.2  PlaneConstantStrainTriangularElements 518 
22.2.3.3  RectangularPlateElement 520 
22.2.4  ComparisonofTwoMassMatrices 520 
22.3  DampingMatrix 522 
22.3.1  DampingofSingleFreedomSystem 522 
22.3.2  DampingofSystemofMultidegreeofFreedom 523 
22.4  NaturalFrequencyandVibrationModeofStructure 526 
22.4.1  NaturalFrequencyandVibrationMode 526 
22.4.2  OrthogonalityofModes 529 
22.4.3  FreeVibrationEquationofStructureRepresentedbyFlexibilityMatrix 531 
22.4.4  E.ectsofZeroMass 532 
22.4.5  StaticCondensation 532 
22.5  ModeSuperpositionMethodforAnalyzingtheStructureofForcedVibration 535 
22.6  DynamicResponseofStructureundertheActionofEarthquakeSolvingbyVibrationModeSuperpositionMethod 536 
22.7  VectorIterationMethodforComputingtheNaturalFrequencyandVibrationMode 538 
22.7.1  InverseIterationMethod:TheCalculationofLowestFrequencyandVibrationMode 539 
22.7.2  ModeClearance:CalculationofOtherFrequenciesandModes 541 
22.7.3  Shifting:ToImprovetheConvergenceSpeed 544 
22.7.4  PositiveIterativeMethod:CalculationoftheMaximumFrequencyandVibrationMode 545 
22.8  EnergyMethodforComputingtheNaturalFrequenciesofStructure 545 
22.8.1  RayleighEnergyMethod 546 
22.8.2  RitzEnergyMethod 547 
22.9  SubspaceIterationMethodforComputingtheNaturalFrequenciesandVibrationModesofStructure 548 
22.9.1  SubspaceIterationMethod 549 
22.9.2  Modi.edSubspaceIterationMethod 553 
22.10  RitzVectorSuperpositionMethodforSolvingForcedVibrationofStructure 554 
22.11  Modi.edRitzVectorSuperpositionMethod 556 
22.12  DynamicSubstructureMethod 557 
22.13  DirectIntegrationMethodforSolvingtheEquationofMotion 560 
22.13.1  LinearAccelerationMethod 561 
22.13.2  WilsonMethod(.. Method) 563 
22.13.3  NewmarkMethod 564 
22.13.4  CalculationStability,Precision,andtheSelectionofTimeStep 566 
22.13.4.1  ComputationalStability 567 
22.13.4.2  CalculationAccuracy 567 
22.13.4.3  TheSelectionoftheTimeStep Δt 569 
22.14  CoupledVibrationofSolidandFluid 570 
22.15  SeismicStressofGravityDam 571 
22.16  SeismicStressofButtressDam 574 
22.17  VibrationofArchDam 575 
22.18  SeismicStressofEarthDam 575 
22.19  SeismicStressesofCylindricalShell 577 
22.20  NonlinearDynamicResponsesofUndergroundStructures 578 Bibliography 580 
......
猜您喜欢

读书导航