书籍详情
TensorFlow机器学习实战指南(原书第2版)
作者:尼克·麦克卢尔(Nick McClure) 著,李飞 刘凯 卢建华 李静 赵秀丽 译
出版社:机械工业出版社
出版时间:2019-07-01
ISBN:9787111631262
定价:¥89.00
购买这本书可以去
内容简介
本书由数据科学家撰写,从实战角度系统讲解TensorFlow基本概念及各种应用实践。真实的应用场景和数据,丰富的代码实例,详尽的操作步骤,带领读者由浅入深系统掌握TensorFlow机器学习算法及其实现。本书第1章和第2章介绍了关于TensorFlow使用的基础知识,后续章节则针对一些典型算法和典型应用场景进行了实现,并配有较详细的程序说明,可读性非常强。读者如果能对其中代码进行复现,则必定会对TensorFlow的使用了如指掌。
作者简介
尼克·麦克卢尔(Nick McClure),数据科学家,目前就职于美国西雅图PayScale公司,曾经在Zillow 公司和Caesar''s Entertainment公司工作,获得蒙大拿大学和圣本尼迪克学院与圣约翰大学的应用数学专业学位。 他热衷于数据分析、机器学习和人工智能。Nick 有时会把想法写成博客(http://fromdata.org/)或者发推特(@nfmcclure)。
目录
译者序
审校者简介
前言
第1章 TensorFlow基础 1
1.1 简介 1
1.2 TensorFlow如何工作 1
1.2.1 开始 1
1.2.2 动手做 2
1.2.3 工作原理 3
1.2.4 参考 3
1.3 声明变量和张量 4
1.3.1 开始 4
1.3.2 动手做 4
1.3.3 工作原理 6
1.3.4 延伸学习 6
1.4 使用占位符和变量 6
1.4.1 开始 6
1.4.2 动手做 6
1.4.3 工作原理 7
1.4.4 延伸学习 7
1.5 操作(计算)矩阵 8
1.5.1 开始 8
1.5.2 动手做 8
1.5.3 工作原理 10
1.6 声明操作 10
1.6.1 开始 10
1.6.2 动手做 10
1.6.3 工作原理 12
1.6.4 延伸学习 12
1.7 实现激励函数 12
1.7.1 开始 12
1.7.2 动手做 12
1.7.3 工作原理 14
1.7.4 延伸学习 14
1.8 读取数据源 14
1.8.1 开始 15
1.8.2 动手做 15
1.8.3 工作原理 18
1.8.4 参考 18
1.9 其他资源 19
1.9.1 开始 19
1.9.2 动手做 19
第2章 TensorFlow进阶 20
2.1 简介 20
2.2 计算图中的操作 20
2.2.1 开始 20
2.2.2 动手做 21
2.2.3 工作原理 21
2.3 TensorFlow的嵌入Layer 21
2.3.1 开始 21
2.3.2 动手做 22
2.3.3 工作原理 22
2.3.4 延伸学习 22
2.4 TensorFlow的多层Layer 23
2.4.1 开始 23
2.4.2 动手做 23
2.4.3 工作原理 24
2.5 TensorFlow实现损失函数 24
2.5.1 开始 25
2.5.2 动手做 26
2.5.3 工作原理 28
2.5.4 延伸学习 28
2.6 TensorFlow实现反向传播 29
2.6.1 开始 29
2.6.2 动手做 30
2.6.3 工作原理 33
2.6.4 延伸学习 33
2.6.5 参考 33
2.7 TensorFlow实现批量训练和随机训练 34
2.7.1 开始 34
2.7.2 动手做 34
2.7.3 工作原理 35
2.7.4 延伸学习 36
2.8 TensorFlow实现创建分类器 36
2.8.1 开始 36
2.8.2 动手做 37
2.8.3 工作原理 38
2.8.4 延伸学习 39
2.8.5 参考 39
2.9 TensorFlow实现模型评估 39
2.9.1 开始 39
2.9.2 动手做 40
2.9.3 工作原理 43
第3章 基于TensorFlow的线性回归 44
3.1 简介 44
3.2 用TensorFlow求逆矩阵 44
3.2.1 开始 45
3.2.2 动手做 45
3.2.3 工作原理 46
3.3 用TensorFlow实现矩阵分解 46
3.3.1 开始 46
3.3.2 动手做 46
3.3.3 工作原理 47
3.4 用TensorFlow实现线性回归算法 47
3.4.1 开始 48
3.4.2 动手做 48
3.4.3 工作原理 50
3.5 理解线性回归中的损失函数 51
3.5.1 开始 51
3.5.2 动手做 51
3.5.3 工作原理 52
3.5.4 延伸学习 53
3.6 用TensorFlow实现戴明回归算法 53
3.6.1 开始 54
3.6.2 动手做 54
3.6.3 工作原理 55
3.7 用TensorFlow实现lasso回归和岭回归算法 56
3.7.1 开始 56
3.7.2 动手做 56
3.7.3 工作原理 58
3.7.4 延伸学习 58
3.8 用TensorFlow实现弹性网络回归算法 58
3.8.1 开始 58
3.8.2 动手做 58
3.8.3 工作原理 60
3.9 用TensorFlow实现逻辑回归算法 60
3.9.1 开始 60
3.9.2 动手做 61
3.9.3 工作原理 63
第4章 基于TensorFlow的支持向量机 65
4.1 简介 65
4.2 线性支持向量机的使用 67
4.2.1 开始 67
4.2.2 动手做 67
4.2.3 工作原理 70
4.3 弱化为线性回归 71
4.3.1 开始 71
4.3.2 动手做 72
4.3.3 工作原理 74
4.4 TensorFlow上核函数的使用 75
4.4.1 开始 75
4.4.2 动手做 76
4.4.3 工作原理 80
4.4.4 延伸学习 80
4.5 用TensorFlow实现非线性支持向量机 80
4.5.1 开始 80
4.5.2 动手做 80
4.5.3 工作原理 83
4.6 用TensorFlow实现多类支持向量机 83
4.6.1 开始 83
4.6.2 动手做 84
4.6.3 工作原理 87
第5章 最近邻域法 88
5.1 简介 88
5.2 最近邻域法的使用 89
5.2.1 开始 89
5.2.2 动手做 89
5.2.3 工作原理 92
5.2.4 延伸学习 92
5.3 如何度量文本距离 92
5.3.1 开始 93
5.3.2 动手做 93
5.3.3 工作原理 95
5.3.4 延伸学习 95
5.4 用TensorFlow实现混合距离计算 95
5.4.1 开始 96
5.4.2 动手做 96
5.4.3 工作原理 98
5.4.4 延伸学习 98
5.5 用TensorFlow实现地址匹配 99
5.5.1 开始 99
5.5.2 动手做 99
5.5.3 工作原理 101
5.6 用TensorFlow实现图像识别 102
5.6.1 开始 102
5.6.2 动手做 102
5.6.3 工作原理 104
5.6.4 延伸学习 105
第6章 神经网络算法 106
6.1 简介 106
6.2 用TensorFlow实现门函数 107
6.2.1 开始 107
6.2.2 动手做 108
6.2.3 工作原理 110
6.3 使用门函数和激励函数 110
6.3.1 开始 111
6.3.2 动手做 111
6.3.3 工作原理 113
6.3.4 延伸学习 113
6.4 用TensorFlow实现单层神经网络 114
6.4.1 开始 114
6.4.2 动手做 114
6.4.3 工作原理 116
6.4.4 延伸学习 117
6.5 用TensorFlow实现神经网络常见层 117
6.5.1 开始 117
审校者简介
前言
第1章 TensorFlow基础 1
1.1 简介 1
1.2 TensorFlow如何工作 1
1.2.1 开始 1
1.2.2 动手做 2
1.2.3 工作原理 3
1.2.4 参考 3
1.3 声明变量和张量 4
1.3.1 开始 4
1.3.2 动手做 4
1.3.3 工作原理 6
1.3.4 延伸学习 6
1.4 使用占位符和变量 6
1.4.1 开始 6
1.4.2 动手做 6
1.4.3 工作原理 7
1.4.4 延伸学习 7
1.5 操作(计算)矩阵 8
1.5.1 开始 8
1.5.2 动手做 8
1.5.3 工作原理 10
1.6 声明操作 10
1.6.1 开始 10
1.6.2 动手做 10
1.6.3 工作原理 12
1.6.4 延伸学习 12
1.7 实现激励函数 12
1.7.1 开始 12
1.7.2 动手做 12
1.7.3 工作原理 14
1.7.4 延伸学习 14
1.8 读取数据源 14
1.8.1 开始 15
1.8.2 动手做 15
1.8.3 工作原理 18
1.8.4 参考 18
1.9 其他资源 19
1.9.1 开始 19
1.9.2 动手做 19
第2章 TensorFlow进阶 20
2.1 简介 20
2.2 计算图中的操作 20
2.2.1 开始 20
2.2.2 动手做 21
2.2.3 工作原理 21
2.3 TensorFlow的嵌入Layer 21
2.3.1 开始 21
2.3.2 动手做 22
2.3.3 工作原理 22
2.3.4 延伸学习 22
2.4 TensorFlow的多层Layer 23
2.4.1 开始 23
2.4.2 动手做 23
2.4.3 工作原理 24
2.5 TensorFlow实现损失函数 24
2.5.1 开始 25
2.5.2 动手做 26
2.5.3 工作原理 28
2.5.4 延伸学习 28
2.6 TensorFlow实现反向传播 29
2.6.1 开始 29
2.6.2 动手做 30
2.6.3 工作原理 33
2.6.4 延伸学习 33
2.6.5 参考 33
2.7 TensorFlow实现批量训练和随机训练 34
2.7.1 开始 34
2.7.2 动手做 34
2.7.3 工作原理 35
2.7.4 延伸学习 36
2.8 TensorFlow实现创建分类器 36
2.8.1 开始 36
2.8.2 动手做 37
2.8.3 工作原理 38
2.8.4 延伸学习 39
2.8.5 参考 39
2.9 TensorFlow实现模型评估 39
2.9.1 开始 39
2.9.2 动手做 40
2.9.3 工作原理 43
第3章 基于TensorFlow的线性回归 44
3.1 简介 44
3.2 用TensorFlow求逆矩阵 44
3.2.1 开始 45
3.2.2 动手做 45
3.2.3 工作原理 46
3.3 用TensorFlow实现矩阵分解 46
3.3.1 开始 46
3.3.2 动手做 46
3.3.3 工作原理 47
3.4 用TensorFlow实现线性回归算法 47
3.4.1 开始 48
3.4.2 动手做 48
3.4.3 工作原理 50
3.5 理解线性回归中的损失函数 51
3.5.1 开始 51
3.5.2 动手做 51
3.5.3 工作原理 52
3.5.4 延伸学习 53
3.6 用TensorFlow实现戴明回归算法 53
3.6.1 开始 54
3.6.2 动手做 54
3.6.3 工作原理 55
3.7 用TensorFlow实现lasso回归和岭回归算法 56
3.7.1 开始 56
3.7.2 动手做 56
3.7.3 工作原理 58
3.7.4 延伸学习 58
3.8 用TensorFlow实现弹性网络回归算法 58
3.8.1 开始 58
3.8.2 动手做 58
3.8.3 工作原理 60
3.9 用TensorFlow实现逻辑回归算法 60
3.9.1 开始 60
3.9.2 动手做 61
3.9.3 工作原理 63
第4章 基于TensorFlow的支持向量机 65
4.1 简介 65
4.2 线性支持向量机的使用 67
4.2.1 开始 67
4.2.2 动手做 67
4.2.3 工作原理 70
4.3 弱化为线性回归 71
4.3.1 开始 71
4.3.2 动手做 72
4.3.3 工作原理 74
4.4 TensorFlow上核函数的使用 75
4.4.1 开始 75
4.4.2 动手做 76
4.4.3 工作原理 80
4.4.4 延伸学习 80
4.5 用TensorFlow实现非线性支持向量机 80
4.5.1 开始 80
4.5.2 动手做 80
4.5.3 工作原理 83
4.6 用TensorFlow实现多类支持向量机 83
4.6.1 开始 83
4.6.2 动手做 84
4.6.3 工作原理 87
第5章 最近邻域法 88
5.1 简介 88
5.2 最近邻域法的使用 89
5.2.1 开始 89
5.2.2 动手做 89
5.2.3 工作原理 92
5.2.4 延伸学习 92
5.3 如何度量文本距离 92
5.3.1 开始 93
5.3.2 动手做 93
5.3.3 工作原理 95
5.3.4 延伸学习 95
5.4 用TensorFlow实现混合距离计算 95
5.4.1 开始 96
5.4.2 动手做 96
5.4.3 工作原理 98
5.4.4 延伸学习 98
5.5 用TensorFlow实现地址匹配 99
5.5.1 开始 99
5.5.2 动手做 99
5.5.3 工作原理 101
5.6 用TensorFlow实现图像识别 102
5.6.1 开始 102
5.6.2 动手做 102
5.6.3 工作原理 104
5.6.4 延伸学习 105
第6章 神经网络算法 106
6.1 简介 106
6.2 用TensorFlow实现门函数 107
6.2.1 开始 107
6.2.2 动手做 108
6.2.3 工作原理 110
6.3 使用门函数和激励函数 110
6.3.1 开始 111
6.3.2 动手做 111
6.3.3 工作原理 113
6.3.4 延伸学习 113
6.4 用TensorFlow实现单层神经网络 114
6.4.1 开始 114
6.4.2 动手做 114
6.4.3 工作原理 116
6.4.4 延伸学习 117
6.5 用TensorFlow实现神经网络常见层 117
6.5.1 开始 117
猜您喜欢