书籍详情
庞加莱的遗产:第二年的数学博客选文(第1部分 影印版)
作者:Terence,Tao 著
出版社:高等教育出版社
出版时间:2017-04-01
ISBN:9787040469950
定价:¥135.00
购买这本书可以去
内容简介
不断有许多只言片语的数学传闻从导师传到学生或者从同事传到同事,但这些常常是模糊的,而在正式文献中去进行讨论叉显得不甚严肃。通常对知道这种“数学传说”的人来说也只是个碰巧的机会而已。但是到了今天,这样一些只言片语也可通过研究博客这种半正式的媒体进行有效和高效率的传播。《庞加莱的遗产(第1部分):第二年的数学博客选文(影印版)》便是由博客产生的。2007年,陶哲轩(Terence Tao)创建了一个包含多种话题的数学博客,涵盖了他自己的研究工作和其他新近的数学进展,也包括他的教课讲义、非专业性的难题以及专业文章。第1年的博客已由美国数学会出版。2008年的博文讲义分两册出版。《庞加莱的遗产(第1部分):第二年的数学博客选文(影印版)》是他的第二年博文的第1部分,主要讲述了遍历理论、组合学以及数论。第二章由陶哲轩的拓扑动力系统和遍历理论课的讲义组成。利用各种对应原理,关于动力系统的递归定理便被用来证明在组合学中和其他一些数学领域中的一些深刻定理。这些讲义尽可能地做到自足,而较之于技术细节则更重视“大视图”。除了这些讲义外,《庞加莱的遗产(第1部分):第二年的数学博客选文(影印版)》还讨论了其他各类论题:从加性素数理论的新发展到单个数学论题的阐述性文章,诸如大数定律和Mersenne素数的Lucas-Lehmer判别法。一些选出的评论和博客读者的反馈也吸收进这些文章中。《庞加莱的遗产(第1部分):第二年的数学博客选文(影印版)》适合于研究生和数学工作者阅读。
作者简介
暂缺《庞加莱的遗产:第二年的数学博客选文(第1部分 影印版)》作者简介
目录
Preface
A remark on notation
Acknowledgments
Chapter 1. Expository Articles
§1.1. The blue-eyed islanders puzzle
§1.2. Kleiner's proof of Gromov's theorem
§1.3. The van der Corput lemma, and equidistribution on nilmanifolds
§1.4. The strong law oflarge numbers
§1.5. Tate's proof of the functional equation
§1.6. The divisor bound
§1.7. The Lucas-Lehmer test for Mersenne primes
§1.8. Finite subsets of groups with no finite models
§1.9. Small samples, and the margin of error
§1.10. Non-measurable sets via non-standard analysis
§1.11. A counterexample to a strong polynomial Freiman-Ruzsa conjecture
§1.12. Some notes on non-classical polynomials in finite characteristic
§1.13. Cohomology for dynamical systems
Chapter 2. Ergodic Theory
§2.1. Overview
§2.2. Three categories of dynamical systems
§2.3. Minimal dynamical systems, recurrence, and the Stone-Cechcompactification
§2.4. Multiple recurrence
§2.5. Other topological recurrence results
§2.6. Isometric systems and isometric extensions
§2.7. Structural theory of topological dynamical systems
§2.8. The mean ergodic theorem
§2.9. Ergodicity
§2.10. The Furstenberg correspondence principle
§2.11. Compact systems
§2.12. Weakly mixing systems
§2.13. Compact extensions
§2.14. Weakly mixing extensions
§2.15. The Furstenberg-Zimmer structure theorem and the Furstenberg recurrence theorem
§2.16. A Ratner-type theorem for nilmanifolds
§2.17. A Ratner-type theorem for S/2(R) orbits
Chapter 3. Lectures in Additive Prime Number Theory
§3.1. Structure and randomness in the prime numbers
§3.2. Linear equations in primes
§3.3. Small gaps between primes
§3.4. Sieving for almost primes and expanders
Bibliography
Index
A remark on notation
Acknowledgments
Chapter 1. Expository Articles
§1.1. The blue-eyed islanders puzzle
§1.2. Kleiner's proof of Gromov's theorem
§1.3. The van der Corput lemma, and equidistribution on nilmanifolds
§1.4. The strong law oflarge numbers
§1.5. Tate's proof of the functional equation
§1.6. The divisor bound
§1.7. The Lucas-Lehmer test for Mersenne primes
§1.8. Finite subsets of groups with no finite models
§1.9. Small samples, and the margin of error
§1.10. Non-measurable sets via non-standard analysis
§1.11. A counterexample to a strong polynomial Freiman-Ruzsa conjecture
§1.12. Some notes on non-classical polynomials in finite characteristic
§1.13. Cohomology for dynamical systems
Chapter 2. Ergodic Theory
§2.1. Overview
§2.2. Three categories of dynamical systems
§2.3. Minimal dynamical systems, recurrence, and the Stone-Cechcompactification
§2.4. Multiple recurrence
§2.5. Other topological recurrence results
§2.6. Isometric systems and isometric extensions
§2.7. Structural theory of topological dynamical systems
§2.8. The mean ergodic theorem
§2.9. Ergodicity
§2.10. The Furstenberg correspondence principle
§2.11. Compact systems
§2.12. Weakly mixing systems
§2.13. Compact extensions
§2.14. Weakly mixing extensions
§2.15. The Furstenberg-Zimmer structure theorem and the Furstenberg recurrence theorem
§2.16. A Ratner-type theorem for nilmanifolds
§2.17. A Ratner-type theorem for S/2(R) orbits
Chapter 3. Lectures in Additive Prime Number Theory
§3.1. Structure and randomness in the prime numbers
§3.2. Linear equations in primes
§3.3. Small gaps between primes
§3.4. Sieving for almost primes and expanders
Bibliography
Index
猜您喜欢