书籍详情
认知网络测量与大数据
作者:(美)Robert Qiu(邱才明) Michael Wicks(M. 威克斯)
出版社:电子工业出版社
出版时间:2016-05-01
ISBN:9787121275517
定价:¥89.00
购买这本书可以去
内容简介
本书系统论述了大规模网络下认知测量的基本理论及某些应用问题,基本涵盖了认知测量在理论和实际应用中各个方面的内容。全书包括随机矩阵和的性质,随机矩阵的集中不等式性质及高维大数据矩阵特征值的集中不等式性质,随机矩阵的非渐进和局部性质及渐进和全局性质。本书还详细介绍了认知测量理论在其他学科中的具体应用,包括压缩感知、矩阵填充、低秩矩阵恢复、高维协方差矩阵估计、高维信号检测、概率条件受限的优化问题求解等。本书最后讨论了相关理论在大数据应用中的分析方法。
作者简介
Michael Wicks,博士,美国空军传感信号处理高级科学家(IEEE Fellow),俄亥俄州研究学者荣誉教授,戴顿大学研究机构卓越研究工程师。主要致力于空军所需的智能、监控、侦查、精度作战和电子战争系统的研究,以及全适应雷达及其相关领域的研究。Michael Wicks教授于1981年在伦斯勒理工学院获得学士学位,1985年在雪城大学获得理学硕士学位,1995年在雪城大学获得博士学位。1981年5月-2011年5月在美国空军任职,期间,1981-2002年担任电气工程师;2005年1月-2005年7月,以及2010年10月-2011年2月担任首席执行科学家一职;2002年-2011年任职高级科学家;同时也担任空军研究实验室董事;2011年5月至今在戴顿大学任教。 Robert C. Qiu(邱才明)博士,美国电气电子工程师协会会士(IEEE Fellow),上海交通大学大数据工程技术研究中心主任,国家“千人计划”特聘教授,上海市“千人计划”特聘教授,上海交通大学特聘教授,美国田纳西理工大学终身教授。主要研究方向:智能电网、大数据、无线网络与无线定位、雷达等领域。Robert C. Qiu教授于1987年在西安电子科技大学获得理学学士学位,1990年在中国电子科技大学获得硕士学位,1995年在美国纽约大学理工学院获得博士学位。1995-1997年担任威讯(GTE)实验室技术研究员;1997-2000年担任朗讯科技有限公司,贝尔实验室技术研究员;2000-2003年担任Wiscom(无线通信)科技有限公司共同发起人、CEO及总裁;2006年在华盛顿海军研究实验室(ONR)担任Summer Faculty Fellow;2009-2011年在俄亥俄的代顿空军研究实验室(AFRL)担任Summer Faculty Fellow。Qiu教授出版了《Smart Grid and Big Data: Theory and Practice》、《Cognitive Networked Sensing and Big Data》、《Introduction to Smart Grid》、《Cognitive Radio Communication and Networking: Principles and Practice》等专著,奠定了随机大数据理论及其在智能电网、无线网络等工程领域应用的理论框架。近五年,在IEEE Trans. Smart Grid、IEEE Trans. Signal Processing、IEEE Trans. Antennas and Propagation、IEEE Trans. Wireless Communication、ICC等领域权威期刊及会议上发表60多篇,获得6项美国及欧洲发明专利。Qiu教授于2011年荣获IEEE通信国际会议最佳论文奖以及荣获田纳西州科技大学的金斯洛最佳论文奖。
目录
第一部分理论
第 1章数学基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.1概率论基本知识. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.1.1联合界. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.1.2独立性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
1.1.3二维随机变量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1.4马尔可夫、切比雪夫不等式和切尔诺夫界 . . . . . . . . . . . . . . . . . . . . . . . .3
1.1.5特征函数和傅里叶变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
1.1.6概率密度函数的拉普拉斯变换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.1.7概率母函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.2独立的随机标量之和与中心极限定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
1.3独立的随机标量之和及几个典型的偏差不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.3.1由概率界到期望界的转换 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1.3.2 Hoe?ding不等式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
1.3.3伯恩斯坦不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.4概率论与矩阵分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.4.1特征值、迹以及埃尔米特矩阵之和 . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.4.2半正定矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.4.3半正定矩阵的偏序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.4.4矩阵函数 f(A)的定义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.4.5矩阵与向量的范数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.4.6期望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.4.7矩和尾概率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
1.4.8随机向量与 Jensen不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
1.4.9收敛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
1.4.10独立的随机标量之和:切尔诺夫不等式 . . . . . . . . . . . . . . . . . . . . . . . . .19
1.4.11随机矩阵的期望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
1.4.12特征值和谱范数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
1.4.13谱映射. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
1.4.14算子凸性与单调性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
1.4.15矩阵函数之迹的单调性和凸性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
1.4.16矩阵指数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.4.17 Golden-Thompson不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
1.4.18矩阵对数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
1.4.19量子相对熵和布雷格曼散度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
1.4.20 Lieb定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
1.4.21矩阵扩张 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
1.4.22半正定矩阵和偏序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
1.4.23期望与半定序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.4.24概率的矩阵表示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.4.25等距性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
1.4.26特征值的 Courant-Fischer性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
1.5由非独立到独立的解耦 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
1.6随机矩阵的基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
1.6.1傅里叶法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
1.6.2矩的方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
1.6.3复高斯随机矩阵的期望矩 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
1.6.4埃尔米特高斯随机矩阵 HGRM(n, σ2). . . . . . . . . . . . . . . . . . . . . . . . . .37
1.6.5高斯随机矩阵 GRM(m, n, σ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
1.7亚高斯随机变量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
1.8亚高斯随机向量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
1.9亚指数随机变量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
1.10 ε-网. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
1.11拉德马赫均值与对称化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
1.12作用于亚高斯随机向量的算子 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
1.13随机过程的上确界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
1.14伯努利序列 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
1.15由随机矩阵和到随机向量和的转换. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
1.16线性有界紧算子. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
1.17自伴随紧算子的谱 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
第 2章矩阵值随机变量之和 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.1随机矩阵和的推导方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
2.2矩阵拉普拉斯变换方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.1方法 1——Harvey推导 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
2.2.2方法 2——Vershynin推导. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
2.2.3方法 3——Oliveria推导 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
2.2.4方法 4——Ahlswede-Winter推导 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
2.2.5方法 5——Gross, Liu, Flammia, Becker以及 Eisert ...............68
2.2.6方法 6——Recht推导 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
2.2.7方法 7——Wigderson和 Xiao推导. . . . . . . . . . . . . . . . . . . . . . . . . . . .69
2.2.8方法 8——Tropp推导. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
2.3矩阵累积量的拉普拉斯变换方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
2.4矩母函数的不适用性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
2.5矩阵累积量母函数的次可加性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
2.6独立随机矩阵之和的尾概率界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
2.7矩阵高斯级数——个例研究 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
2.8应用:具有非均匀方差的高斯矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
2.9期望控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
2.10随机半正定矩阵的和 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
2.11矩阵 Bennett和伯恩斯坦不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
2.12随机矩阵之和的所有特征值的尾概率界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
2.13内部特征值的切尔诺夫界. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
2.14通过随机矩阵和完成线性滤波 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
2.15随机矩阵和的无维数限制不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
2.16一些欣钦型不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
2.17半正定矩阵的稀疏和 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
第 3章测量的集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
3.1测量的集中现象. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
3.2卡方分布 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
3.3随机向量的测量集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
3.4 Slepian-Fernique引理和高斯随机矩阵的测量集中性 . . . . . . . . . . . . . . . . . . . . 103
3.5 Dudley不等式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.6诱导算子范数的集中 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.7高斯和 Wishart随机矩阵的测量集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.8算子范数的测量集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.9亚高斯随机矩阵的测量集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.10最大特征值的测量集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.10.1 Talagrand不等式方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.10.2链方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.10.3一般随机矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.11随机向量投影的测量集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.12进一步讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
第 4章特征值及其函数的集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
4.1特征值和范数的上确界表示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.2特征值的利普希茨映射 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.3矩阵特征值和矩阵迹的平滑性及凸性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.4矩阵函数的泰勒级数近似法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.5 Talagrand集中不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.6维格纳随机矩阵的谱测度集中理论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.7随机矩阵的非可交换多项式集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
4.8 Wishart随机矩阵的谱测度集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.9两个随机矩阵和的集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.10子矩阵的集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.11矩方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.12迹函数的集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.13特征值的集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.14大随机矩阵函数的集中性:线性谱统计量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.15二次型的集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.16随机向量和子空间的距离. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
4.17斯蒂尔切斯变换域的随机矩阵集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.18冯·诺依曼熵函数的集中性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.19随机过程的上确界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.20进一步讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
第 5章随机矩阵的局部非渐近性理论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
5.1符号记法和基础知识 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.2迷向凸体 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3对数凹的随机向量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.4 Rudelson定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.5行独立的样本协方差矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.6对数凹迷向随机向量的集中理论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.6.1 Paouris集中不等式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.6.2非增重排及次序统计量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.6.3样本协方差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
5.7小球概率的集中不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
5.8矩估计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.8.1对数凹的迷向随机向量的矩 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5.8.2凸测度的矩 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.9随机矩阵的大数定律 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.10低秩近似 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
5.11元素相互独立的随机矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.12具有独立行向量的随机矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.12.1独立的行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.12.2重尾分布的行 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.13协方差矩阵的估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.14奇异值的集中性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.14.1紧致小偏差 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.14.2高矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.14.3近似方阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.14.4方阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.14.5长方形矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.14.6随机矩阵和确定性矩阵的乘积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
5.14.7随机矩阵的行列式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.15随机矩阵的可逆性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.16奇异值的普适性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.16.1随机矩阵加确定的矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.16.2协方差矩阵和相关矩阵的普适性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
5.17进一步讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
第 6章随机矩阵的全局渐近理论. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
6.1大随机矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
6.2极限分布律 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.3矩方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.4斯蒂尔切斯变换. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.5自由概率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.5.1概念 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.5.2实际意义 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.5.3定义和基本性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
6.5.4自由独立性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.5.5自由卷积 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
6.6斯蒂尔切斯,R和 S变换表格. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
第二部分应用
第 7章压缩感知与稀疏重构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
7.1压缩感知 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
7.2 JL引理与 RIP条件 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.3结构化随机矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.4循环矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.5随机测量矩阵与确定性字典 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.6部分随机循环矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.7时频结构化矩阵. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.8混沌过程的上确界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7.9特普利茨随机矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.10确定性矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
第 8章矩阵填充与低秩矩阵重构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267
8.1低秩矩阵恢复 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
8.2矩阵 RIP性质. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
8.3重构误差限 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.4假设检验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
8.5高维统计学 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
8.6矩阵压缩感知 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.6.1观测模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.6.2核范数正则化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.6.3限制强凸性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
8.6.4低秩矩阵重构的误差限 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
8.7线性回归 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.8多任务矩阵回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
8.9矩阵填充 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.9.1正交分解与正交投影 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
8.9.2矩阵填充 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
8.10冯 ·诺依曼熵惩罚与低秩矩阵预测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
8.10.1系统模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
8.10.2基于正交基的采样 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
8.10.3低秩矩阵估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
8.10.4所用工具 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.11大量凸成分函数和 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.12基于矩阵填充的相位恢复. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
8.12.1方法学. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
8.12.2基于凸优化的矩阵恢复 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.12.3相位空间成像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
8.12.4自相关 RF断层成像 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
8.13进一步讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
第 9章高维协方差矩阵估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297
9.1大局观:感知、通信、计算和控制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
9.1.1接收信号强度 (RSS)及其在异常检测中的应用 . . . . . . . . . . . . . . . . . . 299
9.1.2非连续正交频分复用 (NC-OFDM)波形及其在异常检测中的应用 . . . . 299
9.2协方差矩阵估计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.2.1经典协方差估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.2.2掩模化样本协方差矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
9.2.3平稳时间序列的协方差矩阵估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
9.3协方差矩阵估计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
9.4协方差矩阵的部分估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
9.5无限维数据的协方差矩阵估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.6信号加噪声 Y = S + X的矩阵模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
9.7鲁棒的协方差估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
第 10章高维检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317
10.1 OFDM雷达 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
10.2主成分分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
10.3稀疏主成分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
10.4基于随机矩阵之和的信息加噪模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
10.5矩阵假设检验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
10.6随机矩阵检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
10.7稀疏备择假设的球形检验. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
10.8与随机矩阵理论的联系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
10.8.1谱方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
10.8.2 Wishart矩阵的低秩扰动. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.9稀疏的主成分检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.9.1 k稀疏最大特征值的集中不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.9.2基于 λk 的假设检验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
max
10.9.3稀疏特征值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
10.10稀疏主成分检验的半定方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
10.10.1 λk 计算问题的半定松弛 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
max
10.10.2凸松弛的高概率界 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
10.10.3基于凸方法的假设检验 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
10.11稀疏向量估计 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.12高维向量检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
10.13高维匹配子空间检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
10.14基于压缩感知的高维向量子空间检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
10.15数据矩阵检测 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
10.16高维双样本检验. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
10.17与非可交换随机矩阵假设检验的联系 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
第 11章概率约束的优化问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343
11.1问题描述 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
11.2随机对称矩阵之和 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
11.3随机矩阵之和的应用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
11.4机会约束的线性矩阵不等式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
11.5概率约束的优化问题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
11.6采用协同干扰机制的概率安全 AF中继 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
11.6.1引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
11.6.2系统模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
11.6.3提出的方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
11.6.4仿真结果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
11.7进一步讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
第 12章数据集的高效处理算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366
12.1低秩矩阵近似 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
12.2矩阵算法的行采样 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
12.3近似矩阵乘法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
12.4矩阵和张量稀疏化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
12.5进一步讨论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
第 13章网络到大数据 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372
13.1大数据的大随机矩阵 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
13.2高维假设检测实例 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
13.3认知无线电网络测试平台. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
13.4无线分布式计算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
13.5数据收集 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
13.6数据存储与管理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
13.7大数据集的数据挖掘 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
13.8无人飞行器对无线网络移动性的利用 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
13.9智能电网 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
13.10从认知无线电网络到复杂网络和随机图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
13.11随机矩阵理论和集中测量. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
参考文献 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .379
猜您喜欢