书籍详情

R语言数据挖掘方法及应用

R语言数据挖掘方法及应用

作者:薛薇

出版社:电子工业出版社

出版时间:2016-04-01

ISBN:9787121283277

定价:¥49.00

购买这本书可以去
内容简介
  大数据不仅意味着数据的积累、存储与管理,更意味着大数据的分析。数据挖掘无可争议地成为当今大数据分析的核心利器。R语言因彻底的开放性策略业已跻身数据挖掘工具之首列。本书以“R语言数据挖掘入门并不难”为开篇,总览了数据挖掘的理论和应用轮廓,明确了R语言入门的必备知识和学习路线,并展示了数据挖掘的初步成果,旨在使读者快速起步数据挖掘实践。后续围绕数据挖掘应用的四大核心方面,安排了数据预测篇:立足数据预测未知,数据分组篇:发现数据中的自然群组,数据关联篇:发现数据的内在关联性,离群数据探索篇:发现数据中的离群点。每篇下各设若干章节,各章节从简单易懂且具代表性的案例问题入手,剖析理论方法原理,讲解R语言实现,并给出案例的R语言数据挖掘代码和结果解释。本书内容覆盖之广泛,原理讲解之通俗,R语言实现步骤之详尽,在国内外同类书籍中尚不多见。相关数据资料及电子教案,可登录华信教育资源网www.hxedu.com.cn免费下载。
作者简介
  中国人民大学副教授,教研室主任,资深作者。主要著作:《SPSS统计分析方法及应用》、《SPSS MODOLER数据挖掘方法及应用》。
目录
目录第一篇 起步篇:R语言数据挖掘入门并不难第1章 数据挖掘与R语言概述【本章学习目标】1.1 为什么要学习数据挖掘和R语言1.2 什么是数据挖掘1.3数据挖掘能给出什么1.3.1数据挖掘结果有哪些呈现方式1.3.2 数据挖掘结果有哪些基本特征1.4 数据挖掘能解决什么问题1.4.1 数据预测1.4.2 发现数据的内在结构1.4.3 发现关联性1.4.4 模式诊断1.5 数据挖掘解决问题的思路1.6数据挖掘有哪些典型的商业应用1.6.1 数据挖掘在客户细分中的应用1.6.2 数据挖掘在客户流失分析中的应用1.6.3 数据挖掘在营销响应分析中的应用1.6.4 数据挖掘在交叉销售中的应用1.6.5 数据挖掘在欺诈甄别中的应用1.7 R语言入门需要知道什么1.7.1 什么是R的包1.7.2 如何获得 R1.7.3 R如何起步1.7.4 R的基本操作和其他【本章附录】第2章 R语言数据挖掘起步:R对象和数据组织 【本章学习目标】2.1 什么是R的数据对象2.1.1 R的数据对象有哪些类型2.1.2 如何创建和访问R的数据对象2.2 如何用R的向量组织数据2.2.1 创建只包含一个元素的向量2.2.2 创建包含多个元素的向量2.2.3 访问向量中的元素2.3 如何用R的矩阵组织数据2.3.1 创建矩阵2.3.2 访问矩阵中的元素2.4 如何用R的数据框组织数据2.4.1 创建数据框2.4.2 访问数据框2.5 如何用R的数组、列表组织数据2.5.1 创建和访问数组2.5.2 创建和访问列表2.6 R数据对象的相互转换2.6.1 不同存储类型之间的转换2.6.2 不同结构类型之间的转换2.7 如何将外部数据组织到R数据对象中2.7.1 将文本数据组织到R对象中2.7.2 将SPSS数据组织到R对象中2.7.3 将数据库和Excel表数据组织到R对象中2.7.4 将网页表格数据组织到R对象中2.7.5 R有哪些自带的数据包2.7.6 如何将R对象中的数据保存起来2.8 R程序设计需哪些必备知识2.8.1 R程序设计涉及哪些基本概念2.8.2 R有哪些常用的系统函数2.8.3 用户自定义函数提升编程水平2.8.4 如何提高R程序处理的能力2.9 R程序设计与数据整理综合应用2.9.1 综合应用一:数据的基本处理2.9.2 综合应用二:如何将汇总数据还原为原始数据【本章附录】第3章 R语言数据挖掘初体验:对数据的直观印象【本章学习目标】【案例与思考】3.1 数据的直观印象3.1.1 R的数据可视化平台是什么?3.1.3 R的图形边界和布局3.1.2 R的图形组成和图形参数3.1.4 如何修改R的图形参数?3.2如何获得单变量分布特征的直观印象3.2.1核密度图:车险理赔次数的分布特点是什么?3.2.2 小提琴图:不同车型车险理赔次数的分布有差异吗?3.2.3克利夫兰点图:车险理赔次数存在异常吗?3.3如何获得多变量联合分布的直观印象3.3.1 曲面图和等高线图3.3.2 二元核密度曲面图:投保人年龄和车险理赔次数的联合分布特点是什么?3.3.3 雷达图:不同区域气候特点有差异吗?3.4如何获得变量间相关性的直观印象3.4.1 马赛克图:车型和车龄有相关性吗?3.4.2 散点图:这些因素会影响空气湿度吗?3.4.3 相关系数图:淘宝各行业商品成交指数有相关性吗?3.5如何获得GIS数据的直观印象3.5.1 绘制世界地图和美国地图3.5.2 绘制中国行政区划地图3.5.3 依据地图绘制热力图:不同省市的淘宝女装成交指数有差异吗?3.7如何获得文本词频数据的直观印象:政府工作报告中有哪些高频词?【本章附录】第二篇 数据预测篇:立足数据预测未知第4章 基于近邻的分类预测:与近邻有趋同的选择!【本章学习目标】【案例与思考】4.1近邻分析: K-近邻法4.1.1 K-近邻法中的距离4.1.2 K-近邻法中的近邻个数4.1.3 R的K-近邻法和模拟分析4.1.4 K-近邻法应用:天猫成交顾客的分类预测4.2 K-近邻法的适用性及特征选择4.2.1 K-近邻法的适用性4.2.2 特征选择:找到重要变量4.3基于变量重要性的加权K-近邻法4.3.1 基于变量重要性的加权K-近邻法的基本原理4.3.2 变量重要性判断应用:天猫成交顾客预测中的重要变量4.4基于观测相似性的加权K-近邻法4.4.1 加权K-近邻法的权重设计4.4.2 加权K-近邻法的距离和相似性变换4.4.3 加权K-近邻法的R实现4.4.4加权K-近邻法应用:天猫成交顾客的分类预测【本章附录】第5章 基于规则的分类和组合预测:给出易懂且稳健的预测!【本章学习目标】【案例与思考】5.1决策树概述5.1.1 什么是决策树?5.1.2 决策树的几何意义是什么?5.1.3 决策树的核心问题5.2 分类回归树的生长过程5.2.1 分类树的生长过程5.2.2 回归树的生长过程5.2.3损失矩阵对分类树的影响5.3 分类回归树的剪枝5.3.1 最小代价复杂度的测度5.3.2 分类回归树后剪枝过程5.3.3 分类回归树的交叉验证剪枝5.4 分类回归树的R实现和应用5.4.1 分类回归树的R实现5.4.2 分类回归树的应用:提炼不同消费行为顾客的主要特征5.5 建立分类回归树的组合预测模型:给出稳健的预测5.5.1 袋装技术5.5.2 袋装技术的R实现5.5.3 袋装技术的应用:稳健定位目标客户5.5.4 推进技术5.5.5 推进技术的R实现5.5.6 推进技术的应用:稳健定位目标客户5.6 随机森林:具有随机性的组合预测5.6.1 什么是随机森林?5.6.2 随机森林的R实现5.6.3 随机森林的应用:稳健定位目标客户【本章附录】第6章 基于神经网络的分类预测:给出高精确的预测!【本章学习目标】【案例与思考】6.1 人工神经网络概述6.1.1 人工神经网络和种类6.1.2 节点:人工神经网络的核心处理器6.1.3 建立人工神经网络的一般步骤6.1.4感知机模型:确定连接权重的基本策略6.2 B-P反向传播网络:最常见的人工神经网络6.2.1 B-P反向传播网络的三大特点6.2.2 B-P反向传播算法:确定连接权重6.2.3 学习率:影响连接权重调整的重要因素6.3 B-P反向传播网络的R实现和应用6.3.1 neuralnet包中的neuralnet函数6.3.2 neuralnet函数的应用:精准预测顾客的消费行为6.3.3 利用ROC曲线确定概率分割值6.3.4 nnet包中的nnet函数【本章附录】第7章 基于支持向量的分类预测:给出最大把握的预测!【本章学习目标】【案例与思考】7.1 支持向量分类概述7.1.1支持向量分类的基本思路:确保把握程度7.1.2支持向量分类的三种情况7.2理想条件下的分类:线性可分时的支持向量分类7.2.1如何求解超平面7.2.1如何利用超平面进行分类预测7.3 一般条件下的分类:广义线性可分时的支持向量分类7.3.1如何求解超平面7.3.2 可调参数的意义:把握程度和精度的权衡7.4 复杂条件下的分类:线性不可分时支持向量分类7.4.1 线性不可分的一般解决途径和维灾难问题7.4.2 支持向量分类克服维灾难的途径7.5 多分类的支持向量分类:二分类的拓展7.6 支持向量回归:解决数值预测问题7.6.1 支持向量回归与一般线性回归:目标和策略7.6.2 支持向量回归的基本思路7.7 支持向量机的R实现及应用7.7.1支持向量机的R实现7.7.2 利用R模拟线性可分下的支持向量分类7.7.3 利用R模拟线性不可分下的支持向量分类7.7.4 利用R模拟多分类的支持向量分类7.7.5 支持向量分类应用:天猫成交顾客的预测【本章附录】第三篇 数据分组篇:发现数据中的自然群组第8章 常规聚类:直观的数据全方位自动分组【本章学习目标】【案例与思考】8.1 聚类分析概述8.1.1聚类分析目标:发现数据中的“自然小类”8.1.2 有哪些主流的聚类算法?8.2基于质心的聚类:K-Means聚类8.2.1 K-Means聚类中的距离测度:体现全方位性8.2.2 K-Means聚类过程:多次自动分组8.2.3 K-Means聚类的R实现和模拟分析8.2.4 K-Means聚类的应用:环境污染的区域划分8.3 PAM聚类:改进的K- Means聚类8.3.1 PAM聚类过程8.3.2 PAM聚类的R实现和模拟分析8.3基于联通性的聚类:层次聚类8.3.1 层次聚类的基本过程:循序渐进的自动分组8.3.2 层次聚类的R实现和应用:环境污染的区域划分8.4基于统计分布的聚类:EM聚类8.4.1 基于统计分布的聚类出发点:有限混合分布8.4.2 EM聚类:如何估计类参数和聚类解8.4.3 EM聚类的R实现和模拟分析8.4.4 EM聚类的应用:环境污染的区域划分【本章附录】第9章 特色聚类:数据分组还可以这样做!【本章学习目标】【案例与思考】9.1 BIRCH聚类概述9.1.1 BRICH聚类有哪些特点?9.1.2 聚类特征和聚类特征树:BIRCH聚类的重要策略9.1.3 BIRCH的聚类过程:由存储空间决定的动态聚类9.1.4 BRICH聚类的R实现9.1.5 BRICH聚类应用:两期岗位培训的比较9.2 SOM网络聚类概述9.2.1 SOM网络聚类设计出发点9.2.2 SOM网络的拓扑结构和聚类原理9.2.3 SOM网络聚类的R实现9.2.4 SOM网络聚类应用:手写邮政编码识别9.2.5 拓展SOM网络:红酒品质预测9.3基于密度的聚类模型:DBSCAN聚类9.3.1 DBSCAN聚类原理:密度可达性是核心9.3.2 DBSCAN聚类的R实现9.3.3 DBSCAN聚类的模拟分析【本章附录】第四篇 数据关联篇:发现数据的内在关联性第10章 发现数据中的关联特征:关联是推荐的依据!【本章学习目标】【案例与思考】10.1 简单关联规则及其测度10.1.1 什么是简单关联规则?10.1.2 如何评价简单关联规则的有效性?10.1.3如何评价简单关联规则的实用性?10.2 Apri
猜您喜欢

读书导航