书籍详情

衍射计算与数字全息(上册 英文版)

衍射计算与数字全息(上册 英文版)

作者:李俊昌,吴艳梅 著

出版社:科学出版社

出版时间:2016-06-01

ISBN:9787030490902

定价:¥128.00

购买这本书可以去
内容简介
  在激光应用研究领域,标量衍射理论能够解决大量实际问题。然而,衍射计算十分繁杂,国内外研究的专著甚少,衍射计算通常成为大学生、研究生及科研人员遇到的难题。随着计算机及CCD技术的进步,基于衍射计算理论及计算机技术,数字全息逐渐形成一项具有重要前景的新兴技术,国内尚无一部专著阐述。本书基于作者近30年在该领域的研究及国内外的研究成果,除系统总结经典衍射积分的数值计算方法外,将对空间曲面衍射场的数值计算进行专门研究,并且,将以数字全息为衍射计算理论的应用载体,较详细地对数字全息涉及的理论、技术及在全息干涉计量中的应用进行介绍。
作者简介
  Li Junchang,male,born in Kunming,Yunnan province, China on September 1 8th,1945,a professor frOm the College of Science,Kunming University of Science and Technology.He graduated from the Department of Physics.Yunnan University in 1967.1n the research field of Laser application.he has carried out scientific coopemtion with Institut National des Sciences Appliqu~e de Lyon,Ecole Centrale de Lyon,Ecole Nationale Superieure des Arts et M6ties de Paris and Universit~du Maine and directed Ph.D students in China and France since 1984.Wu Yanmei,female,born in Loudi,Hunan province, an associate professor.She graduated from Kunming University of Science and Technology,and obtained her Ph.D degree.In recent years,she has published fody― five papers,and won five teaching awards at the national Ievel.
目录
IntroductionChapter 1 Mathematical Prerequisites1.1 Frequently Used Special Functions1.1.1 The“Rectangle”Function1.1.2 The“Sinc”Function1.1.3 The“Step”function1.1.4 The“Sign”Function1.1.5 The“Triangle”Function1.1.6 The“Disk”Funct,ion1.1.7 The~Dirac 6 Function1.1.8 The“Comb”Function1.2 Two-dimensional Fourier Transform1.2.1 Definition and Existence Conditions1.2.2 Theorems Related to the Fourier Transform1.2.3 Fourier Transforms in Polar C:oordinates1.3 Linear Systems1.3.1 Definition1.3.2 Impulse Response and Superposition Integrals1.3.3 Definition of a Two-dimensional Linear Shift—invariant System1.3.4 nansfer Functions and Eigenfunction1.4 Two-dimensional Sampling Theorem1.4.1 Sampling a Continuous Function1.4.2 Reconstruction of the Original Function1.4.3 Space-bandwidth ProductReferencesChapter 2 Scalar Difrraction Theory2.1 The Representation of an Optical Wave by a Complex Function2.1.1 The Representation of a Monochromatic Wave2.1.2 The Expression of the Optical Field in Space2.1.3 Complex Amplitudes of Plane and Spherical Waves in a SpacePlane2.2 Scalar Diffraction Theory2.2.1 Wave Equation2.2.2 Harmonic Plane Wave Solutions to the Wave Equation2.2.3 Angular Spectrum2.2.4 Kirchhoff and Rayleigh.Sommerfeld Formula2.2.5 Paraxial Approximation of Diffraction Problem——nesnel Diffractio耵Integral2.2.6 Fraunhofer Difiraction2.3 Examples of Fraunhofer Diffraction2.3.1 Fraunhofer Diffraction Pattern from a Rectangular Aperture2.3.2 Fraunhofer Diffraction of a Circular Aperture2.3.3 The Diffraction Image of Triangle Aperture on the Focal Plane2.3.4 Fraunhofer Diffraction Pattern from a Sinusoidal-amplitudeGrating2.4 Fresnel Diffraction Integral Analytical and Semi—analyticalCalculation2.4.1 Fresnel Diffraction from a Sinusoidal.amplitude Grating2.4.2 Fresnel Diffraction from a Rectangular Aperture2.4.3 Fresnel Diffraction from a Complex Shape Aperture2.4.4 The Diffraction Field of Refraction Prism Array by Using theRectangular Aperture Diffraction Formula2.4.5 Fresnel Diffraction from a Triangle Aperture2.5 Collins’Formula2.5.1 Description of an Optical System by an ABCD Transfer Matrix2.5.2 ABCD Law and Equivalent Paraxia Lens System82.5.3 Proof of Collins’Formula2.6 Discussion of Optical Transform Properties of Single Lens SystemBased on Collins’Formula2.6.1 0bject in Front of the Lens2.6.2 Object Behind the LensReferencesChapter 3 Diffraction Numerical Calculation and ApplicationExamples3.1 Relation between the Discrete and Analytical Fourier Transforms……Appendix C CD Contets in the Diffraction Calculation and Digital Holography
猜您喜欢

读书导航