书籍详情

随机年龄结构种群系统(英文版)

随机年龄结构种群系统(英文版)

作者:张启敏,李西宁,岳红格 著

出版社:科学出版社

出版时间:2013-11-01

ISBN:9787030389206

定价:¥78.00

购买这本书可以去
内容简介
  以随机扰动项分别为Browan运动、分数Brown运动、Markovian过程和Poisson过程为主线,对种群模型进行数值计算理论的研究;主要针对年龄相关的种群模型、年龄相关扩散的种群模型和神经网络模型开展数值方法研究。采用Euler和半隐式Euler等数值方法,研究年龄相关随机种群模型数值计算方法,给出数值解收敛和指数稳定的充分条件,并通过大量的数值算例验证算法的有效性。为随机种群发展系统求解构造出稳定的求解算法。主要包括四部分内容,一、预备知识;二、年龄相关随机种群模型解的存在性和唯一性;三、年龄相关随机种群模型的数值计算;四、随机神经网络模型的数值计算。《随机年龄结构种群系统(英文版)/生物数学丛书》的内容全部是最新研究成果。
作者简介
暂缺《随机年龄结构种群系统(英文版)》作者简介
目录
Preface
Chapter  1  Introduction
1.1   Introduction
1.2   Basic notations of probability theory
1.3   Stochastic processes
1.4   Brownian motions
1.5   Stochastic integrals
1.6   It?o’s formula
1.7   Moment inequalities
1.8   Gronwall-type inequalities
Chapter  2  Existence, uniqueness and exponential  stability  for stochastic age-dependent population
2.1   Introduction
2.2   Assumptions and preliminaries
2.3   Existence and uniqueness of solutions
2.3.1   Uniqueness of solutions
2.3.2   Existence of strong solutions
2.4   Stability of strong solutions
Chapter  3  Existence and uniqueness for stochastic age-structured population  system with  diffusion
3.1   Introduction
3.2   Euler approximation and main result
3.3   Existence and uniqueness of solutions
3.3.1   Uniqueness of solutions
3.3.2   Existence of strong solutions
3.4   Numerical simulation example
Chapter  4  Existence and uniqueness for stochastic age-dependent population  with  fractional  Brownian  motion
4.1   Introduction
4.2   Preliminaries
viii  Contents
4.3   Existence and uniqueness of solutions
Chapter  5  Convergence of the Euler  scheme for stochastic functional partial  differential  equations
5.1   Introduction
5.2   Preliminaries and the Euler approximation
5.3   The main results
5.4   Numerical simulation example
Chapter  6  Numerical analysis for stochastic age-dependent
population  equations
6.1   Introduction
6.2   Preliminaries and the Euler approximation
6.3   The main results
Chapter  7  Convergence of numerical  solutions to stochastic
age-structured  population  system with  diffusion
7.1   Introduction
7.2   Preliminaries and approximation
7.3   The main results
7.4   Numerical simulation example
Chapter  8  Exponential  stability  of numerical  solutions to a stochas-
tic age-structured  population  system with  diffusion
8.1   Introduction
8.2   Preliminaries and Euler approximation
8.3   The main results
8.4   Numerical simulation example
Chapter  9  Numerical analysis for stochastic age-dependent popula-
tion equations with  fractional  Brownian  motion
9.1   Introduction
9.2   Preliminaries and the Euler approximation
9.3   The main results
9.4   Numerical simulation example
Chapter  10  Convergence of the semi-implicit  Euler  method for stochastic age-dependent population  equations with Markovian switching
10.1  Introduction
10.2  Preliminaries and semi-implicit approximation
10.3  Several lemmas
Contents ix
10.4  Main results
Chapter  11  Convergence of numerical  solutions to stochastic
age-dependent population  equations with  Poisson jump and Markovian switching
11.1  Introduction
11.2  Preliminaries and semi-implicit approximation
11.3  Several lemmas
11.4  Main results
Chapter  12  Numerical analysis for stochastic delay neural networks with Poisson jump
12.1  Introduction
12.2  Preliminaries and the Euler approximation
12.3  The main results
12.4  Numerical simulation example
Chapter  13  Convergence of numerical  solutions to stochastic delay neural networks with  Poisson jump and Markov
switching
13.1  Introduction
13.2  Preliminaries and the Euler approximation
13.3  Lemmas and corollaries
13.4  Convergence with the local Lipschitz condition
Chapter  14  Exponential  stability  of numerical  solutions to a
stochastic delay neural networks
14.1  Introduction
14.2  Preliminaries and approximation
14.3  Lemmas
14.4  Numerical simulation example
Bibliography
Index
猜您喜欢

读书导航