书籍详情
三角形和梯形面积教学研究
作者:陈敏,许含英 著
出版社:教育科学出版社
出版时间:2014-01-01
ISBN:9787504182289
定价:¥39.00
购买这本书可以去
内容简介
《一课研究丛书·图形与几何系列:三角形和梯形面积教学研究》紧紧围绕小学数学中“三角形面积”与“梯形面积”这两课,从上位数学知识(解决一桶水的问题)、课标(从最高的纲领性文件中明确这节课的定位)、教材比较(教学的蓝本,需要认真研读)、学情(体现学生的主体地位)、教学设计(教学前的准备)等方面进行横向和纵向的深度、系统研究,以帮助小学数学教师实现小学数学“图形与几何”领域中重、难点课的有效教学,并启发其进一步思考教学,为其开展教学研究提供了可参照的蓝本和思路。书稿适合教师阅读和培训。
作者简介
暂缺《三角形和梯形面积教学研究》作者简介
目录
1 上位数学知识研究
1.1 三角形面积的计算公式及相关上位数学知识解
什么是三角形的面积?
求三角形面积有哪些公式?
1.2 上位数学知识对教学的启示
平面图形面积计算教学可以按怎样的顺序展开?
在探求面积公式的过程中,可以渗透哪些数学思想方法?
要求三角形面积必须知道它的底和高吗?
2 教材编写比较研究
2.1 课程与教材比较研究综述
2.2 根据实验稿课标编写的教材比较研究
预设的教学基础有何异同?
分别是怎样导入的?
各呈现了哪些推导方法?
预设的学习方式有何异同?
习题的构成有何异同?
2.3 刘静和、张天孝主编的不同时期三种教材的比较研究
选取了哪三个时期的教材进行比较?
各安排在哪个年级教学?
单元结构有何不同?
课时结构有何相同之处?
引入方式有何异同?
推导方法有何异同?
出现了哪些类型的练习题?.
2.4 日本教材比较研究
教育会社教材中有哪些特色内容?
启林馆教材中有哪些特色内容?
2.5 教材比较对教学的启示
3 学情研究
3.1 关于知识掌握水平的几种理论
3.2 学前基础测试与分析
测试的问题、对象与过程
测试的结果与分析
3.3 作业错误收集与归因
测试的问题、对象与过程
测试的结果与分析
4 教学设计比较研究
4.1 已有教学设计概述
4.2 已有教学设计比较
有几种不同的导入方式?
教学中是否组织学生数格子求面积?
为学生准备了什么样的学具?
采用怎样的教学形式来组织学生推导公式?
先呈现哪种推导方法?
如何处理转化图形与推导公式的关系?
练习设计有何相同和不同?
4.3 教学新设计
新授课设计
练习课设计
4.4 对教学新设计的效果评估
测试的内容、对象与过程
测试的结果与分析
5 校本教研活动方案
5.1 校本教研背景综述
5.2 校本教研活动方案举例
方案一:上位数学知识研究
方案二:学情研究
方案三:教学设计研究
下篇 梯形面积的教学研究
1 上位数学知识研究
1.1 上位数学知识解读
梯形面积公式推导的理论依据是什么?
梯形面积公式推导的思想方法是什么?
梯形面积公式的推导方法有哪些?
梯形面积公式的变式有哪些?
1.2 上位数学知识对教学的启示
梯形面积有什么教育价值?
平行四边形、三角形和梯形面积之间有什么联系?
求钢管总根数能用梯形面积公式吗?
2 课程标准(教学大纲)研究
2.1 课程标准(教学大纲)对梯形面积的教学要求
“梯形面积”教学是从什么时候开始的?
课程标准(教学大纲)有哪些教学要求?
课程标准(教学大纲)的教学要求有什么变化?
2.2 课程标准(教学大纲)研究对教学的启示
从只强调计算结果到重视探索推导过程
从只强调实际应用到重视基本思想和基本活动经验
3 教材编写比较研究
3.1 2001年以前教材比较
1949 -1977 年教材是如何编写的?
1978 -2000年教材是如何编写的?
3.2 2001年以后教材比较
选取哪些教材进行比较?
教材是怎样预设教学基础的?
教材是怎样安排年级的?
教材是怎样提出梯形面积计算的?
教材是怎样推导梯形面积计算公式的?
教材是怎样引导学生思考与交流的?
教材是怎样安排习题的?
3.3 刘静和、张天孝主编的不同时期四种教材的比较
选取了哪四个时期的教材进行比较?
怎样安排年级的?
依据哪个课程标准(教学大纲)编写?
预设的学习起点是什么?
课时结构是怎样的?
引入方式有什么不同?
怎样推导梯形面积公式的?
是否呈现拓展性知识及其教育价值?
3.4 日本教材编写情况介绍
课时结构是怎样的?
设计了哪些练习?
4 教学设计比较研究
4.1 教学设计综述
教学目标有什么变化?
怎样引入新课?
如何取舍多种推导方法?
采用什么方式组织探索活动?
如何引导学生交流探索结果?
怎样选用习题?
4.2 教学设计综述对教学的启示
4.3 教学新设计
4.4 优秀教学设计赏析
5 学情研究
5.1 学后基础测试与分析
测试的问题、对象与过程
测试的结果与分析
参考文献
附录
1 根据实验稿课标编写的“三角形面积”教材图片
2 根据实验稿课标编写的“梯形面积”教材图片
3 三角形面积的前测、后测试卷
4 梯形面积的后测试卷
5 三角形面积的教学片段欣赏
6 作业中部分题目学生错误情况统计
后记
1.1 三角形面积的计算公式及相关上位数学知识解
什么是三角形的面积?
求三角形面积有哪些公式?
1.2 上位数学知识对教学的启示
平面图形面积计算教学可以按怎样的顺序展开?
在探求面积公式的过程中,可以渗透哪些数学思想方法?
要求三角形面积必须知道它的底和高吗?
2 教材编写比较研究
2.1 课程与教材比较研究综述
2.2 根据实验稿课标编写的教材比较研究
预设的教学基础有何异同?
分别是怎样导入的?
各呈现了哪些推导方法?
预设的学习方式有何异同?
习题的构成有何异同?
2.3 刘静和、张天孝主编的不同时期三种教材的比较研究
选取了哪三个时期的教材进行比较?
各安排在哪个年级教学?
单元结构有何不同?
课时结构有何相同之处?
引入方式有何异同?
推导方法有何异同?
出现了哪些类型的练习题?.
2.4 日本教材比较研究
教育会社教材中有哪些特色内容?
启林馆教材中有哪些特色内容?
2.5 教材比较对教学的启示
3 学情研究
3.1 关于知识掌握水平的几种理论
3.2 学前基础测试与分析
测试的问题、对象与过程
测试的结果与分析
3.3 作业错误收集与归因
测试的问题、对象与过程
测试的结果与分析
4 教学设计比较研究
4.1 已有教学设计概述
4.2 已有教学设计比较
有几种不同的导入方式?
教学中是否组织学生数格子求面积?
为学生准备了什么样的学具?
采用怎样的教学形式来组织学生推导公式?
先呈现哪种推导方法?
如何处理转化图形与推导公式的关系?
练习设计有何相同和不同?
4.3 教学新设计
新授课设计
练习课设计
4.4 对教学新设计的效果评估
测试的内容、对象与过程
测试的结果与分析
5 校本教研活动方案
5.1 校本教研背景综述
5.2 校本教研活动方案举例
方案一:上位数学知识研究
方案二:学情研究
方案三:教学设计研究
下篇 梯形面积的教学研究
1 上位数学知识研究
1.1 上位数学知识解读
梯形面积公式推导的理论依据是什么?
梯形面积公式推导的思想方法是什么?
梯形面积公式的推导方法有哪些?
梯形面积公式的变式有哪些?
1.2 上位数学知识对教学的启示
梯形面积有什么教育价值?
平行四边形、三角形和梯形面积之间有什么联系?
求钢管总根数能用梯形面积公式吗?
2 课程标准(教学大纲)研究
2.1 课程标准(教学大纲)对梯形面积的教学要求
“梯形面积”教学是从什么时候开始的?
课程标准(教学大纲)有哪些教学要求?
课程标准(教学大纲)的教学要求有什么变化?
2.2 课程标准(教学大纲)研究对教学的启示
从只强调计算结果到重视探索推导过程
从只强调实际应用到重视基本思想和基本活动经验
3 教材编写比较研究
3.1 2001年以前教材比较
1949 -1977 年教材是如何编写的?
1978 -2000年教材是如何编写的?
3.2 2001年以后教材比较
选取哪些教材进行比较?
教材是怎样预设教学基础的?
教材是怎样安排年级的?
教材是怎样提出梯形面积计算的?
教材是怎样推导梯形面积计算公式的?
教材是怎样引导学生思考与交流的?
教材是怎样安排习题的?
3.3 刘静和、张天孝主编的不同时期四种教材的比较
选取了哪四个时期的教材进行比较?
怎样安排年级的?
依据哪个课程标准(教学大纲)编写?
预设的学习起点是什么?
课时结构是怎样的?
引入方式有什么不同?
怎样推导梯形面积公式的?
是否呈现拓展性知识及其教育价值?
3.4 日本教材编写情况介绍
课时结构是怎样的?
设计了哪些练习?
4 教学设计比较研究
4.1 教学设计综述
教学目标有什么变化?
怎样引入新课?
如何取舍多种推导方法?
采用什么方式组织探索活动?
如何引导学生交流探索结果?
怎样选用习题?
4.2 教学设计综述对教学的启示
4.3 教学新设计
4.4 优秀教学设计赏析
5 学情研究
5.1 学后基础测试与分析
测试的问题、对象与过程
测试的结果与分析
参考文献
附录
1 根据实验稿课标编写的“三角形面积”教材图片
2 根据实验稿课标编写的“梯形面积”教材图片
3 三角形面积的前测、后测试卷
4 梯形面积的后测试卷
5 三角形面积的教学片段欣赏
6 作业中部分题目学生错误情况统计
后记
猜您喜欢